Graphene Goes to Space
June 25, 2019 | University of CambridgeEstimated reading time: 2 minutes

Partners in the European Commission’s Graphene Flagship, including the University of Cambridge, launched a rocket this week to test graphene—a two-dimensional form of carbon—for potential applications in space.
The MAterials Science Experiment Rocket (MASER) 14 was launched from the European Space Centre in Esrange, Sweden, in collaboration with the European Space Agency (ESA) and the Swedish Space Corporation (SSC).
The experiment aims to test the possibilities of printing graphene inks in space. Graphene inks can be used in the production of batteries, supercapacitors, printed electronics, and more. If researchers are able to demonstrate how these inks work in space, astronauts could potentially print their own devices on the go, or they can repair electronics with graphene ink printers.
The experiments conducted this week were a collaboration led by the University of Brussels, with Cambridge, Pisa, and ESA. The inks that were tested in the experiments were produced by the research group of Professor Andrea Ferrari, Director of the Cambridge Graphene Centre.
Studying the different self-assembly modes of graphene into functional patterns in zero gravity will enable the fabrication of graphene electronic devices during long-term space missions, as well as help understand fundamental properties of graphene printing on Earth.
Cambridge researchers pioneered the use of liquid phase exfoliation, one of the most common means of producing graphene, to prepare inks from graphene and related materials. Such inks are now used to print devices ranging from flexible electronic sensors and gauges to batteries and supercapacitors.
The experiments will allow researchers to better understand the fundamentals of the printing process on Earth, by removing the presence of gravity and studying how graphene flakes self-assemble.
These experiments are a first step towards making graphene printing available for long term space exploration, since astronauts may need to print electronic devices on demand during long-term missions. Graphene-based composites may also be used to offer radiation protection, a compulsory requirement for human spaceflight, for example during Mars-bound missions.
During its short flight, the MASER rocket experiences microgravity for six minutes, during which time the researchers carry out the tests of graphene’s properties. When the rocket returns to Earth, the samples are retrieved and analyses are carried out. The rocket tests are an extension of a zero-gravity parabolic flight in May 2018, where experiments were conducted during just 24 seconds of microgravity.
“There is no better way to validate graphene’s potential than to send it to the environment it will be used in,” said Carlo lorio, leader of the space activities carried out by the Graphene Flagship, and a researcher at Graphene Flagship partner Université Libre de Bruxelles. “Graphene has unique conductivity properties that scientists are continuing to take advantage of in new processes, devices and in this case, coatings. Experiments like these are fundamental to graphene’s success and integral for building the material’s reputation as the leading material for space applications.”
“The Graphene Flagship has pioneered the exploration of graphene for space applications since 2017,” said Ferrari, who is also Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel. “With three microgravity campaigns in parabolic flights already concluded and a fourth one on the way, this rocket launch is the next step towards our major milestone: bringing graphene to the International Space Station. Space is the limit for graphene. Or, is it?"
Suggested Items
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Flexible Thinking: Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.
Yamaha Motor to Launch New YRP10e Entry-Level Solder Paste Printer
02/26/2025 | Yamaha Motor Europe Robotics, SMT SectionYamaha Motor Europe Robotics SMT Section announces that it will release the new YRP10e solder paste printer on April 1 of this year.