Eye-Controlled Soft Lens Paves Way to Soft Human-Machine Interfaces
August 5, 2019 | University of California San DiegoEstimated reading time: 1 minute

A research team led by the University of California San Diego has developed a soft robotic lens whose movements are controlled by the eyes—blink twice and the lens zooms in and out; look left, right, up or down and the lens will follow.
The lens is the first example of an interface between humans and soft machines. “The human-machine interface, as we know it, features classical machines: computers, wheelchairs, and rigid robotics, for example. The innovation here is the interface with soft robotics. This can really open up new opportunities in the field,” said Shengqiang Cai, a professor of mechanical and aerospace engineering at UC San Diego who led the research.
The prototype system responds to the electric signals generated around the eyes during movement, called electrooculographic signals. Patches of electrodes placed on the skin around the eyes measure these signals and transmit them through a signal processor to the lens.
The system is designed to mimic how the human eye works. The lens itself is made up of salt water encased within two electroactive elastomer films that act like muscles. They can expand, contract, or change their structure when an electrical potential is applied. This enables the lens to look in four directions and change its focal point. Because the lens is made of soft materials, it can change its focal length by as much as 32 percent.
Illustration and photos of the soft robotic lens.
“The idea behind this project is very generic,” Cai said. “In this demonstration, we use signals generated by eye movement to control a soft tunable lens. But in principle, we could expand this idea and use other biological signals (hand movement, heartbeat, etc.) to control soft grippers, for example. There is more potential to this technology than just one specific application or commercial product. And that is what I find truly exciting.”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
KYZEN Partners with LPW to Elevate High Purity Cleaning with Cutting-Edge Cyclic Nucleation Technology in North America
08/13/2025 | KYZEN'KYZEN, a global leader in advanced cleaning solutions, has reached a major milestone in high-purity cleaning with the addition of a state-of-the-art Vacuum Cyclic Nucleation System at its North American Application Lab.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.