Power-Full Sound Waves
September 24, 2019 | Carnegie Mellon UniversityEstimated reading time: 2 minutes

Trillions of sensors are in our future, and they will need energy. Batteries are routinely used to power tiny devices, but there are other options. Piezoelectricity, the technology that converts mechanical energy into electricity, is gaining attention these days because it can scavenge energy from movement or vibrations.
For this reason, Carnegie Mellon University researchers are exploring the use of piezoelectricity for smart city applications. Smart cities of the future will rely on massive sensor networks, and the sensors in these systems need energy. Continually replacing sensor batteries would be extremely time consuming and produce waste materials that would be difficult to dispose.
"It would be a lot more efficient if you could just live off of scavenged energy. You eliminate batteries and their problems, and instead you harvest energy," said Gianluca Piazza, a professor of electrical and computer engineering and the director of the John and Claire Bertucci Nanotechnology Laboratory.
While other researchers extract energy from solar, heat, and mechanical vibrations, Piazza's team focuses on powering devices with ultrasound. They launch sound waves that transfer over relatively long distances and are captured by tiny piezoelectric devices co-located with sensors, and hence, remotely powering the sensors.
"So you have a power source somewhere, and you have all the sensors. Whenever you need to power them or interrogate them, you just send this blast of sound waves to them. They receive it, and they turn on," Piazza said.
Because these sound waves are a bit more than 40 kilohertz — right above the audible range — they do not bother humans or animals. They can efficiently transmit over 10-30 meters, which is around 30-100 feet.
Piazza's research currently is designed for indoor applications. Take a conference room as an example. A large speaker would send out sound waves to sensors distributed in the room. These sensors, which are about the size of a grain of sand, have membranes that vibrate and generate a charge when they receive the waves.
"It's like the same way when you're moving your foot in your shoe, you're actually stimulating the piezoelectric material and generating a charge," Piazza said.
Piazza's system generates enough electricity to power small radio devices that send and receive signals. Currently, the power source that launches the sound waves needs to be plugged in. Piazza's team would like to further develop the system so they can launch sound waves without the need of plugged-in units. To this end, researchers at Carnegie Mellon and elsewhere are exploring novel piezoelectric materials that can be used to harvest energy, which could be beneficial for indoor communications, smart infrastructure, and implantable or wearable devices.
Suggested Items
Epirus Receives $43.5 Million Contract from U.S. Army for IFPC-HPM Generation II Systems
07/18/2025 | PRNewswireEpirus announced a $43,551,060 contract from the U.S. Army's Rapid Capabilities and Critical Technologies Office (RCCTO).
Silicon Mountain Contract Services Enhances SMT Capabilities with New HELLER Reflow Oven
07/17/2025 | Silicon Mountain Contract ServicesSilicon Mountain Contract Services, a leading provider of custom electronics manufacturing solutions, is proud to announce a significant upgrade to its SMT production capability with the addition of a HELLER 2043 MK5 10‑zone reflow oven to its Nampa facility.
Perovskite Solar Cells Market to Reach New Heights with High Efficiency and Low-Cost Energy Tech
07/17/2025 | PRNewswireIn 2024, the global market size of Perovskite Solar Cells was estimated to be worth US$968 million and is forecast to reach approximately US$10210 million by 2031 with a CAGR of 40.6% during the forecast period 2025-2031.
LITEON Debuts High-Performance AI Infrastructure Solutions at the Datacloud Global Congress
07/16/2025 | LITEON TechnologyFollowing its participation in COMPUTEX Taipei 2025 at the end of May, LITEON Technology made its debut at the 2025 Datacloud Global Congress in Cannes, France.
SEL Index of Freedom Highlights Top States for Business and Trade
07/15/2025 | SELSchweitzer Engineering Laboratories (SEL), a global leader in power system protection, automation and control solutions, has released the 2025 SEL Index of Freedom, an evaluation of the business climate across the 50 U.S. states.