One Small Step for Electrons, One Giant Leap for Quantum Computers
September 27, 2019 | University of RochesterEstimated reading time: 6 minutes

Quantum computing has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors, sensors, and communication devices. But transferring information and correcting errors within a quantum system remains a challenge to making effective quantum computers.
Image Caption: Thin aluminum wires connect the surface of a quantum processor semiconductor chip to pads on a circuit board. The researchers fabricate the device by patterning and depositing metal gates on a chip. The metal gates are designed to trap individual electrons in the semiconductor. The researchers send electrical signals to the device via the aluminum wires, changing the voltage on the metal gates to control the electrons. They also receive electrical signals from the device to help monitor the electrons’ behavior. (University of Rochester photo / J. Adam Fenster)
In a paper in the journal Nature, researchers from Purdue University and the University of Rochester, including John Nichol, an assistant professor of physics, and Rochester PhD students Yadav P. Kandel and Haifeng Qiao, demonstrate their method of relaying information by transferring the state of electrons. The research brings scientists one step closer to creating fully functional quantum computers and is the latest example of Rochester’s initiative to better understand quantum behavior and develop novel quantum systems. The University recently received a $4 million grant from the Department of Energy to explore quantum materials.
John Nichol and PhD students Yadav Kandel, left, and Haifeng Qiao, right, demonstrated a way to manipulate electrons and transmit information quantum-mechanically, bringing scientists one step closer to creating a fully functional quantum computer. Quantum computers will be able to perform complex calculations, factor extremely large numbers, and simulate the behaviors of atoms and particles at levels that classical computers cannot. (University of Rochester photo / J. Adam Fenster)
Quantum Computers
A quantum computer operates on the principles of quantum mechanics, a unique set of rules that govern at the extremely small scale of atoms and subatomic particles. When dealing with particles at these scales, many of the rules that govern classical physics no longer apply and quantum effects emerge; a quantum computer is able to perform complex calculations, factor extremely large numbers, and simulate the behaviors of atoms and particles at levels that classical computers cannot.
Quantum computers have the potential to provide more insight into principles of physics and chemistry by simulating the behavior of matter at unusual conditions at the molecular level. These simulations could be useful in developing new energy sources and studying the conditions of planets and galaxies or comparing compounds that could lead to new drug therapies.
“You and I are quantum systems. The particles in our body obey quantum physics. But, if you try to compute what happens with all of the atoms in our body, you cannot do it on a regular computer,” Nichol says. “A quantum computer could easily do this.”
Quantum computers could also open doors for faster database searches and cryptography.
“It turns out that almost all of modern cryptography is based on the extreme difficulty for regular computers to factor large numbers,” Nichol says. “Quantum computers can easily factor large numbers and break encryption schemes, so you can imagine why lots of governments are interested in this.”
Page 1 of 2
Suggested Items
Rethinking How Operators Interface With the Line
06/11/2025 | Nolan Johnson, SMT007 MagazineJurgen Schmerler, CEO of WaveOn, reveals how AI and large language models are revolutionizing electronics manufacturing. By integrating AI with machinery, operators can access real-time, multimodal information for troubleshooting and maintenance, significantly reducing training time and enhancing efficiency. He discusses the industry's challenges, the customizable knowledge bases, and the future of proactive maintenance and process control.
Standards: The Roadmap for Your Ideal Data Package
05/29/2025 | Andy Shaughnessy, Design007 MagazineIn this interview, IPC design instructor Kris Moyer explains how standards can help you ensure that your data package has all the information your fabricator and assembler need to build your board the way you designed it, allowing them to use their expertise. As Kris says, even with IPC standards, there’s still an art to conveying the right information in your documentation.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
CACI’s Mission-Critical Technology will Accelerate the Delivery of Electronic Warfighting Capabilities to the U.S. Navy’s Existing Fleet
05/13/2025 | CACI International Inc.CACI International Inc announced today that it has been awarded additional work by the U.S. Navy to procure enhancements to the current fielded Shipboard Information Warfare Exploit system under its existing contract for Spectral, a next-generation shipboard signals intelligence (SIGINT), electronic warfare (EW), and information operations (IO) weapon system.
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.