One Small Step for Electrons, One Giant Leap for Quantum Computers
September 27, 2019 | University of RochesterEstimated reading time: 6 minutes

Quantum computing has the potential to revolutionize technology, medicine, and science by providing faster and more efficient processors, sensors, and communication devices. But transferring information and correcting errors within a quantum system remains a challenge to making effective quantum computers.
Image Caption: Thin aluminum wires connect the surface of a quantum processor semiconductor chip to pads on a circuit board. The researchers fabricate the device by patterning and depositing metal gates on a chip. The metal gates are designed to trap individual electrons in the semiconductor. The researchers send electrical signals to the device via the aluminum wires, changing the voltage on the metal gates to control the electrons. They also receive electrical signals from the device to help monitor the electrons’ behavior. (University of Rochester photo / J. Adam Fenster)
In a paper in the journal Nature, researchers from Purdue University and the University of Rochester, including John Nichol, an assistant professor of physics, and Rochester PhD students Yadav P. Kandel and Haifeng Qiao, demonstrate their method of relaying information by transferring the state of electrons. The research brings scientists one step closer to creating fully functional quantum computers and is the latest example of Rochester’s initiative to better understand quantum behavior and develop novel quantum systems. The University recently received a $4 million grant from the Department of Energy to explore quantum materials.
John Nichol and PhD students Yadav Kandel, left, and Haifeng Qiao, right, demonstrated a way to manipulate electrons and transmit information quantum-mechanically, bringing scientists one step closer to creating a fully functional quantum computer. Quantum computers will be able to perform complex calculations, factor extremely large numbers, and simulate the behaviors of atoms and particles at levels that classical computers cannot. (University of Rochester photo / J. Adam Fenster)
Quantum Computers
A quantum computer operates on the principles of quantum mechanics, a unique set of rules that govern at the extremely small scale of atoms and subatomic particles. When dealing with particles at these scales, many of the rules that govern classical physics no longer apply and quantum effects emerge; a quantum computer is able to perform complex calculations, factor extremely large numbers, and simulate the behaviors of atoms and particles at levels that classical computers cannot.
Quantum computers have the potential to provide more insight into principles of physics and chemistry by simulating the behavior of matter at unusual conditions at the molecular level. These simulations could be useful in developing new energy sources and studying the conditions of planets and galaxies or comparing compounds that could lead to new drug therapies.
“You and I are quantum systems. The particles in our body obey quantum physics. But, if you try to compute what happens with all of the atoms in our body, you cannot do it on a regular computer,” Nichol says. “A quantum computer could easily do this.”
Quantum computers could also open doors for faster database searches and cryptography.
“It turns out that almost all of modern cryptography is based on the extreme difficulty for regular computers to factor large numbers,” Nichol says. “Quantum computers can easily factor large numbers and break encryption schemes, so you can imagine why lots of governments are interested in this.”
Page 1 of 2
Suggested Items
IPC APEX EXPO 2025: We’ve Got It Covered
04/01/2025 | I-Connect007 Editorial TeamIPC APEX EXPO is the largest electronics manufacturing trade show in North America, bringing together professionals from all sectors of the supply chain to educate, network, and share their products and services. We’ve put all our coverage of the show in one easy-to-find location. Just click on “Videos,” “Show Coverage” and “Photos” to find what you’re looking for. Check back regularly as more content is added. You won’t want to miss any of our unique coverage.
Just Because You Can, Doesn’t Mean You Should
03/20/2025 | Tony Plemel, Flexible Circuit TechnologiesDecisions are usually made by gathering information and differing opinions, then making the best choice based upon that information. The same process is used when designing flexible circuits and rigid-flex circuits. For example, when designing a flex circuit or rigid-flex circuit, we consider some basic factors.
Counterfeit Electronics & Materials Symposium Program Announced and Registration Open
03/19/2025 | SMTAThe SMTA is excited to announce the technical program for the Counterfeit Electronics & Materials Symposium. The symposium will be held 15-16 April 2025 at AFC Wimbledon in London, England.
Dana on Data: The Missing AI-NPI Link
03/19/2025 | Dana Korf -- Column: Dana on DataThis year is yielding an extensive amount of communications, conferences, software updates, consultants, and news releases about how generative and re-generative artificial intelligence solutions and large language models are revolutionizing design, all with the intent to reduce new product introduction (NPI) cycle times.
INEMI Launches Study of AOI Inspection for Fine Pitch Substrates Seeking Industry Participation
03/11/2025 | iNEMIThe fine lines and spaces of increasingly popular heterogeneous SiP packages, coupled with larger panel sizes and more substrate layers, demand increased capabilities from automated optical inspection (AOI) equipment to accurately detect, characterize and reject true defects without over-rejections.