InnovationLab, Heidelberg Collaborate on Industrial Production of Printed and Organic Sensors
August 21, 2020 | InnovationLabEstimated reading time: 3 minutes
InnovationLab, an expert in printed and organic electronics, announced a partnership with Heidelberger Druckmaschinen AG (Heidelberg), a world market leader in the manufacturing of printing presses, that will result in the mass production of inexpensive printed and organic sensors, freeing companies to design and produce low-cost customized pressure sensors on an industrial scale for the first time.
According to IDTechEx, the market for printed sensors, which includes both organic and flexible sensors, will reach US$4.5B by 2030 — opening new use cases in automotive, healthcare, supply chain logistics and other markets. Meeting that level of demand, however, will require a new approach to the design-to-production process of sensors.
“Embarking on the development and industrial production of printed and organic electronics represents a milestone for Heidelberg and for Germany as an industrial player. As we see it, our involvement in this production of high-tech sensors opens up the potential for growth in the two- to three-digit million euro range,” said Rainer Hundsdörfer, CEO, Heidelberg. “Our partnership with InnovationLab allows us to offer customers quality of design, reliability, a lower bill of materials, and the highest imaginable volumes. In fact, we have the capacity to produce enough sensors to cover a tennis court every hour under a reliable three-shift production system."
“The first step to the widespread adoption of printed and organic sensors is good design, which is one of our historic strengths,” said Luat Nguyen, managing director, InnovationLab. “The second is reliable, high-quality volume production. Our collaboration with Heidelberg fulfills both requirements, enabling us to provide a one-stop shop for printed and organic electronics. Now we can give customers a quick transition from design and feasibility studies through market entry, all the way to mass production. This is our unique Lab2Fab concept.”
Advantages of Printed and Organic Electronics
Until recently, companies have manufactured sensors using conventional semiconductor foundries, which rely on a nine-step process to fabricate each sensor. While well-established, this approach has several downsides: Design-to-production cycles are slow, iteration is costly—as is the per-sensor price—and choice of substrate is limited to rigid materials such as silicon, making such sensors unsuitable for many use cases.
In contrast, printing sensors using roll-to-roll printing methods provides greater choice in functional materials, substrates and deposition methods, offering flexibility of design to accommodate thousands of different applications.
Benefits:
- A wide range of materials include organic semiconductors and nanomaterials, (transparent) conductive inks, force- and temperature-sensitive materials allow customers to choose among rigid substrates (e.g., glass, ITO-glass, silicon) and flexible substrates (e.g., PET, PEN, TPU, flexible glass, and others)
- Printing sensors only requires a two-step process, saving time and resources—and significantly reducing bill of materials (BOM) costs
- Sensors can be printed on flexible, even biodegradable materials, such as textiles—introducing new use cases such as foils of printed sensors that wrap around car batteries to monitor battery health in real-time as well as printed sensors in bandages that monitor the pressure on or moisture of a wound. Printed flexible sensors on food items can both track supply chain conditions like compliance with the cold chain.
Technical Capabilities
InnovationLab offers an ISO 9001-certified facility that utilizes processes that conform to the IATF 16949 automotive quality standard. Customers have the choice of two production sites, both offering clean rooms, which is important for the quality and reliability of the printing process.
InnovationLab has a highly modified printing press that supports prototyping and pilot production of up to one million (finger-sized) sensors per day. Heidelberg’s production site in Wiesloch features a further developed printing press that is solely used for the industrial production of printed sensors, run in a three-shift operation.
Suggested Items
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
KYZEN to Spotlight KYZEN E5631, AQUANOX A4618 and Process Control at SMTA Silicon Valley Expo and Tech Forum
11/21/2024 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Silicon Valley Expo & Tech Forum on Thursday, December 5, 2024 at the Fremont Marriott Silicon Valley in Fremont, CA.
Flexible Thinking: Rules of Thumb: A Word to the Wise
11/20/2024 | Joe Fjelstad -- Column: Flexible ThinkingIn the early days of electronics manufacturing—especially with PCBs—there were no rules. Engineers, scientists, and technicians largely felt their way around in the dark, making things up as they went along. There was a great deal of innovation, guessing, and testing to make sure that early guidelines and estimates were correct by testing them. Still, they frequently made mistakes.
Cadence Unveils Arm-Based System Chiplet
11/20/2024 | Cadence Design SystemsCadence has announced a groundbreaking achievement with the development and successful tapeout of its first Arm-based system chiplet. This innovation marks a pivotal advancement in chiplet technology, showcasing Cadence's commitment to driving industry-leading solutions through its chiplet architecture and framework.