Scientists Creating Better Memristors for Brain-like Computing
May 17, 2021 | ACN NewswireEstimated reading time: 1 minute
Scientists are getting better at making neurone-like junctions for computers that mimic the human brain's random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these 'memristors' for the journal Science and Technology of Advanced Materials.
Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.
Electronic circuits in these 'neuromorphic' computers include memristors that resemble the junctions between neurones called synapses. Energy flows through a material from one electrode to another, much like a neurone firing a signal across the synapse to the next neurone. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.
"Oxides are the most widely used materials in memristors," says Zhuge. "But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this."
Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions' movements ultimately change the memristor's resistance, which is necessary to send or stop a signal through the junction.
Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.
Suggested Items
PFN, MC and IIJ to Establish Joint Venture Preferred Computing Infrastructure for AI Cloud Computing
12/27/2024 | Mitsubishi CorporationPreferred Networks, Inc. (PFN), Mitsubishi Corporation (MC) and Internet Initiative Japan Inc. (IIJ) announced that the three companies will establish their joint venture Preferred Computing Infrastructure, Inc. (PFCI) on January, 2025.
Quantum Leaps: Winners of Airbus and BMW Group’s Quantum Computing Challenge Unveiled
12/12/2024 | BUSINESS WIREAirbus and BMW Group have pushed quantum computing forward another step to leverage its significant potential for future mobility solutions. At Q2B, the companies have unveiled the winners of the Quantum Computing Challenge, an international initiative to identify and mature quantum solutions for the most promising mobility applications.
PCs and Tablets Expected to Grow in 2024, But AI Isn’t the Main Driver -Yet
12/06/2024 | IDCThe global market for personal computing devices, including PCs and tablets, is set to grow 3.8% in 2024, reaching 403.5 million units, according to the latest forecast from the International Data Corporation (IDC) Worldwide Quarterly Personal Computing Device Tracker.
Infineon, Quantinuum Partner to Accelerate Quantum Computing Towards Meaningful Real-world Applications
11/20/2024 | InfineonInfineon Technologies AG, a global leader in semiconductor solutions, and Quantinuum, a global leader in integrated, full-stack quantum computing, today announced a strategic partnership to develop the future generation of ion traps.
AMD and Fujitsu to Begin Strategic Partnership to Accelerate Open-Source AI Initiatives
11/01/2024 | AMDAMD and Fujitsu Limited today announced that they have signed a memorandum of understanding (MOU) to form a strategic partnership to create computing platforms for AI and high-performance computing (HPC). The partnership, encompassing aspects from technology development to commercialization, will seek to facilitate the creation of open source and energy efficient platforms comprised of advanced processors with superior power performance and highly flexible AI/HPC software and aims to accelerate open-source AI and/or HPC initiatives.