Scientists Develop Lead-Absorbing Tape to Boost Viability of Rising Star in Solar Power Industry
December 10, 2021 | Northern Illinois UniversityEstimated reading time: 2 minutes
Researchers at Northern Illinois University and the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, are reporting a potential breakthrough that could help speed commercialization of highly promising perovskite solar cells (PSCs) for use in solar panels.
In an Oct. 28 brief communication to the journal Nature Sustainability, the scientists describe development of a cost-effective Scotch-tape-like film that can be applied to PSCs and capture 99.9% of leaked lead in the event of solar cell damage.
The industry-ready film would help alleviate health and safety concerns without compromising perovskite solar-cell performance or operation, according to the research team. Testing of the lead-absorbing film included submerging damaged cells in water.
“Our practical approach mitigates the potential lead-leakage to a level safer than the standard for drinking water,” said NIU Chemistry Professor Tao Xu, who co-led the research with Kai Zhu of NREL’s National Renewable Energy Laboratory.
“We can easily apply our lead-absorbing materials to off-the-shelf films currently used to encapsulate silicon-based solar cells at the end of their production, so existing fabrication processes for PSCs would not be disrupted,” Xu added. “At the end of PSC production, the films would be laminated to the solar cell.”
An emerging class of solar cells, PSCs are considered rising stars in the field of solar energy because of their high-power conversion efficiency (exceeding 25.5%) and low manufacturing costs. But PSCs are not yet commercially available on a widescale basis because key challenges remain, including potential lead-toxicity issues.
Small amounts of water-soluble lead continue to be essential components to the light-absorbing layer of high efficiency PSCs, which must be able to withstand severe weather for commercial viability. Significant lead leakage from damaged cells would cause health and safety concerns.
To counter those concerns, the transparent tapes use lead absorbents made with a standard solar ethylene vinyl acetate (EVA) film and a pre-laminated layer of lead-absorbing material. The tape can be attached to both sides of fabricated PSCs, as in the standard encapsulation process used in silicon-based solar cells.
Among the tests used to assess the durability of the new technology, the scientists exposed the film-encapsulated PSCs to outdoor, rooftop conditions for three months. Razor blades and hammers were used to then damage the solar cells before they were submerged in water for seven days. The lead-absorbing tapes exhibited a lead-sequestration efficiency of over 99.9%.
“Perovskite solar cells hold great hope for a more sustainable future,” Xu said. “This work offers a convenient and industry-ready method to diminish the potential lead leakage from lead-containing PSCs, facilitating future commercialization of perovskite-based photovoltaic technology.”
The research was supported by the DOE’s Office of Energy Efficiency and Renewable Energy under the Solar Energy Technology Office. In addition to Xu and Zhu, authors on the communication to Nature Sustainability are NIU Ph.D. students Xun Li and Jianxin Wang and postdoctoral researchers Fei Zhang and Jinhui Tong of NREL’s Chemistry and Nanoscience Center.
NREL is leading the commercialization of this new lead-absorbing technology, but interested companies can also contact NIU Innovation Director Luke Sebby and Assistant Director for Technology Transfer Mark Hankins.
Suggested Items
Designing for Cost to Manufacture
11/21/2024 | Marcy LaRont, I-Connect007ICAPE's Richard Koensgen, a seasoned field application engineer with a rich background in PCB technology, shares his journey of working with customers and manufacturers through the intricacies of circuit board development and emphasizes the importance of early-stage collaboration with PCB designers. With a focus on tackling the most challenging aspects of PCB design and manufacturing, he discusses everything from layout considerations to the thermal challenges of today's technology when it comes to designing for cost.
OSI Systems Receives $11M Order for Electronic Assemblies
11/21/2024 | BUSINESS WIREOSI Systems, Inc announced that its Optoelectronics and Manufacturing division has received an order for approximately $11 million to provide critical electronic sub-assemblies for a leading-edge healthcare original equipment manufacturer (OEM), known for innovative and specialized medical solutions.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
Hon Hai Joins OpenUSD Alliance to Promote Standardized and Open Source Universal Scenario Description (USD) Technology
11/21/2024 | Hon Hai Technology GroupHon Hai Technology Group , the world’s largest technology manufacturing and service provider, announced that it has joined the Alliance for OpenUSD (AOUSD ) to support the construction of a 3D ecosystem and promote Cooperation among various industries around the world promotes the standardization of Universal Scene Description (USD ).