Record-Breaking Hole Mobility Heralds a Flexible Future for Electronics
December 29, 2021 | University of TsukubaEstimated reading time: 2 minutes
Technologists envisage an electronically interconnected future that will depend on cheap, lightweight, flexible devices. Efforts to optimize the semiconductor materials needed for these electronic devices are therefore necessary. Researchers from the University of Tsukuba have reported a record-breaking germanium (Ge) thin film on a plastic substrate that offers flexibility without compromising performance. Their findings are published in ACS Applied Electronic Materials (Supplementary Journal Cover).
Ge is a popular semiconductor for use in transistors because it has high charge carrier mobility (charge carrier refers to the electrons and electron holes that move through the material). Ge can also be processed at the relatively low temperature of ~500°C and has a low Young's modulus, which means it is a softer alternative to commonly used materials such as silicon.
Ge thin films can be grown using the solid-phase crystallization technique. These thin films are polycrystalline, meaning they are made up of many Ge crystals. In general, larger crystals lead to greater carrier mobilities because bigger crystals form fewer grain boundaries that obstruct the current. Recent increases in grain size have therefore led to effective Ge thin-film transistors on rigid substrates such as glass.
However, many of the plastic substrates used to introduce flexibility are not resistant to temperature above 400°C, which makes it difficult to grow high quality crystals with appropriate carrier mobility.
Now, the researchers have used a polyimide film that can withstand temperatures up to 500°C. This allowed post-annealing treatment of the films, meaning crystal quality was not compromised for flexibility.
"We grew a GeOx layer directly on the flexible polyimide, then the Ge film on top of that," explains study lead author Professor Kaoru Toko. "Oxygen that diffused into the Ge from the GeOx layer helped to achieve large crystals. We found that the Ge crystallinity was influenced by both the thickness of the GeOx layer and the temperature at which the Ge layer was grown."
In this study, the largest Ge crystals observed were approximately 13 µm in diameter and grown at 375°C on a 100-nm-thick GeOx layer. The large grain size resulted in the film having a hole mobility of 690 cm2 V?1 s?1, which is the highest value reported to date for a semiconductor on an insulating substrate.
"Our record-breaking film is a significant step forward for transistor technology," says Professor Toko. "Its high performance, combined with its flexibility, affordability, and portability, make it perfectly suited to the development of new flexible devices such as wearable electronics to support future digital initiatives such as the internet of things."
Suggested Items
VDL to Produce Crucial Components for New Medical Isotope Reactor
12/18/2024 | VDL GroepVDL Groep is working to further broaden and strengthen its hightech activities. The industrial family business with its headquarters in Brainport Eindhoven is taking its first, substantial steps into the nuclear sector, a key growth market. Operating company VDL KTI in Mol, Belgium, will produce and supply crucial components for the new PALLAS reactor in Petten.
VDL to Produce Crucial Components for New Medical Isotope Reactor
12/16/2024 | VDL GroepVDL Groep is working to further broaden and strengthen its hightech activities. The industrial family business with its headquarters in Brainport Eindhoven is taking its first, substantial steps into the nuclear sector, a key growth market.
PDR Offers Advanced Infrared Heating Technology for BGA Rework
12/02/2024 | PDRPDR Americas is proud to highlight its industry-leading solutions for BGA and SMT rework. As a trusted partner in electronics manufacturing, PDR’s rework stations deliver precision, reliability, and simplicity, setting a new standard for addressing the challenges of modern rework applications.
ZESTRON South Asia releases whitepaper – Impact of Cleaning Technology on Discrete Packaging - The Difference in Wire Bonding Yield
12/02/2024 | ZESTRONZESTRON, the global leading provider of high precision cleaning products, services, and training solutions in the electronics manufacturing and semiconductor industries, is pleased to release the whitepaper “Impact of Cleaning Technology on Discrete Packaging - The Difference in Wire Bonding Yield”
Happy’s Tech Talk #34: Producibility and Other Pseudo-metrics
11/12/2024 | Happy Holden -- Column: Happy’s Tech TalkAs an engineer, I thrive on data, and one of my favorite forms is metrics. However, the one metric that has always challenged me is producibility. I define this as more than just passing a DRC in CAM, but the entire envelope of “simplicity of design,” “suitability for test,” and many more. Yet, producibility seemed to be different for different engineers and we had no clear way to establish and define producibility other than opinion. When I worked at HP, the company invested in a methodology called design for manufacturing and assembly using the GE/Hitachi Methodology and Dewhurst-Boothroyd software. Finally, I had a methodology that created a producibility score.