Siemens’ SynthAI Revolutionizes Machine Vision Training with Artificial Intelligence
April 13, 2022 | SiemensEstimated reading time: 2 minutes
SynthAI automatically generates thousands of randomized annotated synthetic images from 3D CAD data within minutes without the specialist knowledge typically required.
Siemens Digital Industries Software’s SynthAI™ service is delivering the power of machine learning and artificial intelligence to solve the challenge of training machine vision systems.
“We were looking for a quick and easy solution that will enable us to detect wire terminals in a robotic electric cabinet assembly station. With SynthAI our control engineers were able to achieve great results within just a few hours,” said Omer Einav, CEO, Polygon Technologies. “The tedious task of annotating a large set of training images to train the model was shortened significantly. The results show great promise for many additional use cases we plan to handle with SynthAI."
Machine learning is used for a variety of vision-based automation use cases such as robotic bin picking, sorting, palletizing, quality inspection and more. While usage of machine learning for vision-based automation is growing, many industries face challenges and struggle to implement it within their computer vision applications. This is due to the need to collect many images of the parts in question and the challenges associated with accurately annotating the different products within those images – particularly before production or manufacturing begins.
To solve this challenge, synthetic data is used to speed up the data collection and training process. However, utilizing synthetic data for vision use cases requires expertise in synthetic image generation and can be complex, time consuming, and expensive. This where Siemens’ SynthAI changes the game.
Rather than waiting for preproduction parts to be ready or using complex processes to generate synthetic data, machine vision specialists only need to provide 3D CAD data of the parts. SynthAI will then automatically generate thousands of randomized annotated synthetic images within minutes without the specialist knowledge typically required.
SynthAI will also automatically train a machine learning model that could be used to detect your product in real life. Once the training is done, the trained model can be downloaded, tested and deployed offline – using no more than a little Python coding. If organizations prefer to handle training of their own systems, complete synthetic image datasets together with the annotations are also available.
“The market for Artificial Intelligence for Machine Vision is expected to reach $25B by 2023, but there are many challenges facing those looking to take advantage of its benefits,” said Zvi Feuer, Senior Vice President and General Manager Digital Manufacturing at Siemens Digital Industries Software. “SynthAI demonstrates how Siemens is taking its depth of knowledge in both product engineering systems as well as production preparation and planning and finding room for innovations that allow our customers to take advantage of tomorrow’s technology, today.”
Suggested Items
n-hop technologies Limited, OneAsia Network Limited Partner to Revolutionize Data Transfer and Networking Solutions
12/20/2024 | ACN Newswiren-hop technologies Limited, a leader in telecommunications and computer networking innovations, and OneAsia Network Limited (OneAsia), the AI factory enabler with data centres across APAC, have signed a Memorandum of Understanding (MOU) to collaborate on pioneering large data transfer solutions and AI Data Centre networking technologies.
Avnet Insights: Engineers Outline Opportunity for AI
12/19/2024 | AvnetFor the fourth consecutive year, Avnet, Inc. (Nasdaq: AVT) will release its Avnet Insights survey, which has been keeping a pulse on how engineers are responding to the market since 2021. This year’s survey examines technology’s new frontier: Artificial Intelligence, and the promise – and challenges – it presents for product design.
Flex Factory Recognized for Manufacturing Excellence and Continuous Improvement by the Association for Manufacturing Excellence
12/19/2024 | FlexFlex announced that its Zhuhai, China site, specializing in advanced assembly, tool design and manufacturing, and metal and plastics capabilities for Lifestyle and Data Center customers, received an Excellence Award from the Association for Manufacturing Excellence (AME) for demonstrating world-class continuous improvement and results. This is the third consecutive year a Flex facility received an AME Excellence Award.
Statistically Testing Inner Layer Yield Improvement Projects
12/18/2024 | Dr. Patrick Valentine, UyemuraCan we trust our measurement system to give us reliable data? Is it accurate, repeatable, and reproducible? Measurement is the foundation of quality. We measure for two primary reasons: to make decisions on product quality and to provide data that will inform continuous improvement projects. We can engage in continuous improvement projects if we are confident in our measurement systems.
Rheinmetall, Auterion Working Together on Drone Technology and Developing Standard Operating System for Military Industries
12/17/2024 | RheinmetallScience Applications International Corp. has been awarded a prime position on the $1.8 billion Personnel and Readiness Infrastructure Support Management (PRISM) Multiple Award Task Order Contract (MATOC) vehicle to support the Department of Defense (DoD) and its need to obtain critical services in a shorter time frame. The contract award is for one base year and four option years.