A New Skoltech Patent: Defect-free Graphene for Flexible Transparent Electronics
November 22, 2022 | SkoltechEstimated reading time: 3 minutes

Skoltech researchers have patented a method that enables producing arbitrarily shaped functional graphene components on a transparent substrate with 100-nanometer resolution, which hold much promise for flexible and transparent electronics. The new approach helps avoid defects that arise during graphene transfer between substrates and strongly affect the material’s quality.
“Flexible and transparent electronics is typically associated with wearable biosensors that monitor vital signs, such as heart rate, breathing, and blood oxygenation, and relay them to a smartphone or fitness band,” Skoltech PhD student Aleksei Shiverskii, one of the inventors, comments. “An affordable and efficient technology that at first may seem impractical soon becomes a ubiquitous and indispensable appliance, like a bluetooth electric kettle or a wifi vacuum cleaner. I believe that someday flexible and transparent electronics will become a fixture, too.”
Currently, metallic meshes embedded in polymer or glass are used as conductors in flexible transparent electronics. The most common metals for a mesh are copper, silver, and even gold or platinum for hi-end devices. However, the metallic meshes that heat the glass can hardly be called transparent. Although they cope quite well with their task, the finest mesh only lets through about two-thirds of the light. As opposed to metallic meshes that you can see with a naked eye, graphene is more transparent, less visible, and highly conductive. Besides, some studies show that graphene has higher bending fatigue strength and, therefore, can last longer.
Importantly, graphene is made from much cheaper and eco-friendlier materials as compared to pure metals and, unlike copper or silver, is not susceptible to oxidation.
Typically, graphene is synthesized on a temporary substrate and then transferred onto a permanent polymer substrate that supports and shapes it as needed. The transfer is performed using the poorly scalable Langmuir-Blodgett method that tends to cause defects and impair the quality of graphene. The Skoltech team has come up with an alternative solution to deal with the transfer issue that prevents widespread adoption of graphene in flexible transparent electronics.
“Graphene is usually produced using a temporary flat substrate. In the Langmuir-Blodgett method, the substrate is dissolved once the synthesis is complete, with graphene film left floating on the liquid surface. Then a permanent substrate is slipped under the film for graphene to take the required shape. It is at this point that defects appear in the material,” Shiverskii explains.
“In our method, the temporary substrate is made to match the ultimately desired graphene shape. Once we have placed the permanent substrate onto the film, we remove the temporary one. Since graphene settles down in its final shape, there is no need to drape it over the permanent substrate, which helps avoid wrinkles and other defects. The 3D temporary substrate offers much broader possibilities than conventional techniques. Now, along with 2D or quasi-2D circuits we can produce 3D circuits of whatever complexity we wish with a resolution of several dozen nanometers,” patent co-holder and Skoltech Assistant Professor Sergey Abaimov says.
He continues, “The patent discloses a specific optimal lab-tested method, in which we create a photopolymer mask with the shape of the future graphene structure on a catalytic copper substrate, coat it with chromium, and then remove the polymer, leaving a negative chromium mask of the required shape on the substrate. We use chromium because it withstands high-temperature synthesis and passivates graphene in covered areas. Along with this method, the patent presented more general approaches — both in the description and formula — covering a broad range of alternative methods.”
“I expected multiple revisions of this complex patent but to my surprise, the application was approved right away, with only minor technical corrections. I hope that our research will have wide application and help propel Russian technology in flexible and transparent electronics to new heights,” Abaimov concludes.
Suggested Items
AT&S Opens Europe’s First IC Substrate Plant and Competence Center in Leoben
06/04/2025 | AT&SAT&S officially inaugurated its new Competence Center for R&D and IC Substrate Production on Tuesday with a high-profile ceremony at its headquarters in Leoben-Hinterberg. Numerous high-ranking guests from politics, industry, and the media were welcomed to the event and given an exclusive tour of the 11,000-square-meter site of cutting-edge technology. With an investment of more than € 500 million,
New Era Electronics Establishes U.S. Presence with New Salt Lake City Operation
06/04/2025 | PRNewswireNew Era Electronics, a leading provider of high-performance industrial computing solutions, announces the establishment of its first United States location in Salt Lake City, Utah. This strategic expansion to the U.S. underscores New Era Electronics' commitment to enhancing supply chain continuity and delivering exceptional services across North America.
ZETWERK Enhances Manufacturing Capabilities with TRI
06/04/2025 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, is pleased to announce that ZETWERK Electronics has integrated TRI's Automated Optical Inspection (AOI) and Solder Paste Inspection (SPI) solutions into its state-of-the-art manufacturing facility in Tamil Nadu.
Rehm Thermal Systems Mexico: Ten Years of Growth and Innovation in an Emerging Market
06/03/2025 | Rehm Thermal SystemsOver ten years ago, Luis A. Garcia began his success story at Rehm Thermal Systems. On May 15, 2013, he initially joined as a member of the Rehm USA team.
Top Tech in Taiwan: IPC's Blueprint to Advance Smart Manufacturing
06/04/2025 | Sydney Xiao, IPCRenowned as a global hub of innovation and a cornerstone of the electronics industry, Taiwan is leading advancements in technology and manufacturing. A decade ago, IPC established an office in Taiwan, embedding itself deeply in this innovative ecosystem. Now with nearly 200 member companies in the region, IPC remains dedicated to driving standardization, education, and technological progress in Taiwan’s electronics manufacturing sector.