BLUE Aims to Capture, Convert Ocean Energy with Low Environmental Impact
February 26, 2024 | DARPAEstimated reading time: 2 minutes
A new DARPA program is exploring the potential for dissolved organic matter, phytoplankton, zooplankton, and even microplastics to continually refuel, and thus extend the mission life, of ocean-deployed sensors. The BioLogical Underwater Energy, or BLUE, program seeks to solve the energy problem with low environmental impact using these abundant and energy-dense forms of marine biomass and other substances.
Ocean-deployed sensor systems including seabed-mounted profiling systems – devices that can measuring water temperature, salinity, and flow patterns -- hold great potential for national security, understanding dynamics of marine environments, and monitoring marine climate change. Owing to convenience and reliability, the vast majority of these systems are powered by batteries. Space constraints and finite energy densities of batteries, however, limit the amount of energy these systems can carry on board. As such, these systems must be serviced to recharge or replace depleted batteries, which is expensive, logistically demanding, and places personnel and platforms at risk. While endurance can be extended by reducing power consumption, active high duty cycle sensors, data processing, and communications require significant electrical power, and compromising on any one of these capabilities diminishes operational value.
If the 30-month BLUE program is successful, DARPA will demonstrate a novel, persistent, sustainable, low-environmental impact power supply that provides ultralong endurance and high payload capacity to remote, ocean-deployed sensor systems.
“It is our hypothesis that the energy requirements of many ocean-deployed systems can be met by development of an onboard device that converts marine biomass into simple fuels and then converts those fuels into operational power,” said Dr. Leonard Tender, BLUE program manager.
Performers will initially focus on characterization of microscopic marine biomass that can be utilized to generate electrical power, identification of key environmental features needed to best meet program goals, and leveraging biology to develop the process for conversion of the input materials to electrical power. Teams will also develop strategies for the capture and mass transport of biomass through conversion to enable up to one year of continuous power generation. The final step involves completion of a comprehensive ecological and environmental impact analysis to ensure system safety.
BLUE performers will engage with U.S. government and defense stakeholders, as well as appropriate regulatory authorities, to ensure safety and efficacy. Teams will be required to meet with ethical, legal, and societal implications experts and ensure the research addresses any related concerns. In the first three months of the program, performers will be working with an independent verification and validation team to conduct environmental assessment of biomass consumption.
“Achieving battery-level power persistently and while fully submerged would be a game changer,” added Tender.
A Broad Agency Announcement solicitation with all program details and instructions for submitting proposals is available on SAM.gov.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Delta to Acquire Noda RF Technologies to Enhance its Power Solutions Portfolio for the Semiconductor Industry
10/30/2025 | PRNewswireDelta Electronics, Inc., a leader in power management and smart green solutions, today announced the acquisition of 90.23% stake of Japan's Noda RF Technologies Co., Ltd. (NRF) through its subsidiary Delta Electronics (Netherlands) B.V. for JPY 5,024 million (approximately NT$1,034 million).
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Elementary, Mr. Watson: Heat—The Hidden Villain of Power Electronics
10/28/2025 | John Watson -- Column: Elementary, Mr. WatsonIf electricity were a group of college students, then power electronics and the PCB designers who dive into it would insist on driving the car on every road trip because they know the car inside and out—they’re the students with jumper cables in the trunk, a tire pressure gauge in the glove box, and snacks stashed under the seat. While the others argue over playlists and directions, power electronics is busy ensuring the alternator doesn’t fry, the headlights don’t dim, and everyone reaches the destination with fuel still in the tank.
Infineon to Purchase Long-Term Green Electricity from Wind Farms in Brandenburg, Germany and Solar Plants in Spain
10/27/2025 | InfineonInfineon Technologies AG has concluded Power Purchase Agreements (PPA) with PNE AG and Statkraft for green electricity.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/24/2025 | Andy Shaughnessy, I-Connect007This week, we have quite a bit of international content in this week’s list of must-reads. Nothing happens in a vacuum, including electronics manufacturing and design, and this has been quite an eventful year. How many of us are now tariff experts? I’m certainly not, but that hasn’t stopped me from opining about the situation.