-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Next-Generation Ultra-Thin HDI PCB Manufacturing Challenges
May 11, 2015 | Tarja Rapala-Virtanen, Erkko Helminen and Timo Jokela, TTM Technologies Inc.Estimated reading time: 2 minutes

High-density interconnection (HDI) PCB technology is advancing to enable increased miniaturization and functionality of products such as smartphones, tablet computers and wearable devices. This dictates continual reduction in feature size for conductor line width and spacing, micro-via pad diameter and pitch, and conductor and insulating layer thickness to accommodate more components and layers without increasing size, weight or volume of the PCB assembly. Furthermore, as wireless data transmission bandwidth and processing speed increase, electrical performance of the PCBs becomes ever more critical.
Just as the IC industry met serious roadblocks in feature scalability to keep pace with Moore’s law of doubling performance improvement, so the PCB industry now faces challenges in basic process capability and material properties to continue delivering improvements in interconnection density and electrical performance on their forecast trajectories. Even in the state-of the-art process node for all-layer-via (ALV) HDI design, limitations in process scalability and escalating factory cost raise questions about diminishing returns in packaging density and performance.
In particular, the industry faces significant challenges increasing PCB layer count and reducing thickness as individual insulation layers cross the 50 micron threshold, where degradation of dimensional stability and electrical performance (particularly signal impedance and resistance to leakage) accelerate, and increasing signal routing density below the 40 micron line width threshold where conventional subtractive technology fails and additive technology remains too costly and small in production scale to be a practical alternative.
While the increased use of sophisticated and adaptable automation such as laser direct imaging (LDI), sub 100 micron laser vias (LDD) and increased use of vision technology offer some improvements, escalating cost and hard limits in material performance suggest we need to focus on the fundamentals to make the system more robust, capable and affordable.
This paper will describe the recent challenges and developments in manufacturing ALV HDI technology to meet the needs for high volume, robust, reliable, and cost competitive solutions for electronic packaging.
Introduction
As the popularity of social media surges, increasingly communication is done through smart phones or tablets. Social media is now also a crucial part of any successful businesses marketing plan. It offers us a platform to interact with existing and potential customers and can often provide us with feedback and new ideas. That means the amount of data transferred has increased considerably in recent years and will continue. Subsequent increases in functionality, together with reduction in component size, have been the main drivers for PCB development. Semiconductor technology progresses at an almost exponential rate, typically doubling in functionality every couple of years and is expected to continue at this pace for several years to come.
When comparing typical rigid PCB structure used for the first mobile phones with current state of the art PCBs for smart phones, one can see tremendous differences. It can be said that miniaturization has been the predominant trend over the years. While the external dimensions of phones have not greatly changed, component and PCB size shrink to accommodate greater functionality has been remarkable; in a typical smart phone or tablet, a majority of space is occupied by displays and batteries as the remaining electronics have been downsized and integrated into small, compartmentalized spaces.
Editor's Note: This article originally appeared in the April issue of The PCB Magazine.
Suggested Items
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Hon Hai Research Institute Achieves Breakthrough in Quantum Cryptography Recognized by Leading Global Conference
06/17/2025 | FoxconnHon Hai Research Institute (HHRI), the research arm of Hon Hai Technology Group (Foxconn), the world’s largest electronics manufacturer and technology service provider, has achieved a significant breakthrough in quantum computing.
Global PCB Connections: Embedded Components—The Future of High-performance PCB Design
06/19/2025 | Jerome Larez -- Column: Global PCB ConnectionsA promising advancement in this space is the integration of embedded components directly within the PCB substrate. Embedded components—such as resistors, capacitors, and even semiconductors—can be placed within the internal layers of the PCB rather than mounted on the surface. This enables designers to maximize available real estate and improve performance, reliability, and manufacturability.