Invention of Forge-proof ID to Revolutionise Security
November 13, 2015 | Lancaster UniversityEstimated reading time: 2 minutes
Scientists have discovered a way to authenticate or identify any object by generating an unbreakable ID based on atoms.
The technology, which is being patented at Lancaster University and commercialised through the spin-out company Quantum Base, uses next-generation nanomaterials to enable the unique identification of any product with guaranteed security.
The research published today in Nature’s Scientific Reports uses atomic-scale imperfections that are impossible to clone as they comprise the unmanipulable building blocks of matter.
First author Jonathan Roberts, a Lancaster University Physics PhD student of the EPSRC NOWNANO Doctoral Training Centre, said: “The invention involves the creation of devices with unique identities on a nano-scale employing state-of-art quantum technology. Each device we’ve made is unique, 100% secure and impossible to copy or clone.”
Current authentication solutions such as anti-counterfeit tags or password-protection base their security on replication difficulty, or on secrecy, and are renowned for being insecure and relatively easy to forge. For example, current anti-counterfeiting technology such as holograms can be imitated, and passwords can be stolen, hacked and intercepted.
The ground-breaking atomic-scale devices do not require passwords, and are impervious to cloning, making them the most secure system ever made. Coupled with the fact that they can be incorporated into any material makes them an ideal candidate to replace existing authentication technologies.
Writing in Nature’s Scientific Reports, the researchers said: “Simulating these structures requires vast computing power and is not achievable in a reasonable timescale, even with a quantum computer. When coupled with the fact that the underlying structure is unknown, unless dismantled atom-by-atom, this makes simulation extremely difficult.
Electronically stimulating an atomically random system, represented above by a key, produces a unique pattern that can be used for authentication or identification purposes whilst being fundamentally unclonable.
Page 1 of 2
Suggested Items
Rheinmetall, ICEYE Sign MoU to Establish Joint Venture
05/14/2025 | RheinmetallRheinmetall and globally leading SAR satellite manufacturer ICEYE are further intensifying their cooperation. The two companies intend to establish a joint venture for satellite production. A memorandum of understanding to this effect was signed on 8 May 2025.
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.
L3Harris Receives $214 Million in Orders to Support German Armed Forces
05/12/2025 | L3Harris TechnologiesL3Harris Technologies has received multiple orders expected to total $214 million under Germany’s Digitalization – Land Based Operations (D-LBO) program.
Kaynes Technology Acquires Canada-Based August Electronics
05/09/2025 | PRNewswireAugust Electronics Inc. is pleased to announce that it has entered into a definitive agreement to be acquired by Kaynes Canada Limited, a wholly owned step-down subsidiary of Kaynes Technology India Limited, a leading Electronics System Design & Manufacturing (ESDM) company. The transaction is expected to close by the end of May 2025, subject to customary regulatory approvals and closing conditions.
LITEON Technology Reports Consolidated April Sales of NT$13.4 Billion Up 27% YoY
05/09/2025 | LITEON TechnologyLITEON Technology reported its April consolidated revenue of NT$13.4 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 27% YoY.