Counting Photons…How Low Can You Go?
January 18, 2016 | DARPAEstimated reading time: 3 minutes
The process of detecting light—whether with our eyes, cameras or other devices—is at the heart of a wide range of civilian and military applications, including light or laser detection and ranging (LIDAR or LADAR), photography, astronomy, quantum information processing, medical imaging, microscopy and communications. But even the most advanced detectors of photons—the massless, ghostlike packets of energy that are the fundamental units of light—are imperfect, limiting their effectiveness. Scientists suspect that the performance of light-based applications could improve by orders of magnitude if they could get beyond conventional photon detector designs—perhaps even to the point of being able to identify each and every photon relevant to a given application. But is it even possible, within the laws of quantum physics, to definitively detect and identify every relevant photon—and to be confident that each detection signal is true and accurate?
DARPA’s Fundamental Limits of Photon Detection—or Detect—program aims to establish the first-principles limits of photon detector performance by developing new fully quantum models of photon detection in a variety of technology platforms, and by testing those models in proof-of-concept experiments. A Special Notice was issued yesterday on FedBizOps announcing an informational session for potential proposers to be held Jan. 25, 2016, in Arlington, Virginia.
“The goal of the Detect program is to determine how precisely we can spot individual photons and whether we can maximize key characteristics of photon detectors simultaneously in a single system,” said Prem Kumar, DARPA program manager. “This is a fundamental research effort, but answers to these questions could radically change light detection as we know it and vastly improve the many tools and avenues of discovery that today rely on light detection.”
Photons in the visible range fill at the minimum a cubic micron of space, which might seem to make them easy to distinguish and to count. The difficulty arises when light interacts with matter. A cubic micron of conventional photon-detection material has more than a trillion atoms, and the incoming light will interact with many of those atoms simultaneously. That cloud of atoms has to be modeled quantum mechanically to conclude with precision that a photon was actually there. And modeling at that massive scale hasn’t been possible—until recently.
Page 1 of 2
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
SAIC Announces CEO Transition
10/28/2025 | SAICScience Applications International Corporation, a premier Fortune 500® company driving our nation's digital transformation across the defense, space, civilian, and intelligence markets, today announced that the Company’s Board of Directors has appointed James (Jim) Reagan as Interim Chief Executive Officer, effective immediately. Mr. Reagan succeeds Toni Townes-Whitley.
Barnes Completes Separation Into Two Companies: Barnes Aerospace and The Industrial Solutions Group
10/28/2025 | BUSINESS WIREBarnes Group Inc., which was acquired by funds managed by affiliates of Apollo in January, announced that it has successfully separated into two companies, Barnes Aerospace and The Industrial Solutions Group, each with its own leadership team and capital structure.
Saab, the Swedish Armed Forces Extend Gripen Maintenance Contract
10/13/2025 | SaabSaab and the Swedish Armed Forces have extended an existing contract and Saab has received an order for support- and maintenance services for Gripen C/D and E. The order value is approximately SEK 4 billion and deliveries will take place 2026 to 2027.
RTX Unveils new APG-82(V)X Radar Enhanced with Gallium Nitride
09/25/2025 | RTXRaytheon, an RTX business, has unveiled the latest iteration of its combat-proven APG-82 radar, the APG-82(V)X. The new radar variant incorporates cutting-edge gallium nitride (GaN) technology to enhance the radar's effectiveness, delivering increased range, advanced air-to-air, air-to-ground and electronic warfare capabilities.
U.S. Army Awards $13M IDIQ Contract to Element U.S. Space & Defense
09/11/2025 | BUSINESS WIREElement U.S. Space & Defense, a trusted leader in advanced testing and engineering services, has been awarded a multi-year indefinite-delivery/indefinite-quantity (IDIQ) contract valued at $13,021,816 from United States Army Contracting Command - Aberdeen Proving Ground (ACC-APG).