-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Doug Pauls Explains Ion Chromatography
January 26, 2016 | Pete Starkey, I-Connect007Estimated reading time: 7 minutes
Residues from manufacturing operations may adversely impact the reliability of printed circuit assemblies in the field. But not all residues are harmful or detrimental: What is critical is to understand what kinds of residues are present and in what amounts. ROSE (Resistivity of Solvent Extract) techniques have been used as a measure of ionic contamination by bare board manufacturers and assemblers since the 1970s, and there is a huge installed base of ROSE test equipment. But does ROSE testing give sufficient information about the nature and origin of the residue in the context of present-day electronics manufacturing? Ion chromatography offers a more precise and selective analytical technique, but how does it work and how can it be used to determine electronic cleanliness? What ion-chromatography-based specifications exist and how they were derived, and how you would use this tool for process troubleshooting and optimization?
Principal Materials and Process Engineer at Rockwell Collins and Chair of the IPC Cleaning and Coating Committee, Doug Pauls drew upon his 25 years' experience in the use of ion chromatography for electronics assembly improvement to answer these questions, in a webinar presented on behalf of SMART Group and moderated by Bob Willis.
Pauls began by reviewing the status and limitations of ROSE testing, and discussed the reasons why the industry should not continue to use ROSE for acceptance testing against a background of almost everyone having the equipment for a test that was called up in the majority of purchasing specifications, that was easy to carry out, and easy to pass. But the methods and pass-fail criteria came from an era where high-solids rosin fluxes and CFC solvent cleaning were standard, and these were no longer relevant. Present-day assemblies were vastly different in component density, complexity, materials of construction, and manufacturing methods.
He drew attention to IPC-TR-583 ‘An In-Depth Look at Ionic Cleanliness Testing’, published as long ago as 1993 but still applicable, which had concluded that ROSE tests tended not to be repeatable or reproducible, the "equivalency factors" were not valid and that the equipment should not be used for product acceptance but only for the process control purposes for which it was originally intended. An example he gave from his own production facility was when a sudden increase in the result of routine ROSE testing gave early warning of a failure in the works DI water plant. But in general, his comment was: "You may know something is making the extract solution conductive, but you don’t know what. Many modern contaminants won’t even make an ionic cleanliness tester twitch! How comfortable are you using reliability criteria developed in the 1970s? You need a tool that is much more specific on the soils on your product. ROSE is a broad bladed axe – ion chromatography is a surgeon's scalpel!"
To explain how ion chromatography worked, he began with one of his renowned graphic analogies: this time vegetable beef soup, consisting of macaroni letters, beef, carrots, tomatoes, potatoes, broth, salt and spices, and a magical strainer with which he could separate all the individual constituents and examine them. In this way, he could determine the main differences between Doug Pauls’ soup and Bob Willis’ soup. But even if they contained the same proportions of macaroni letters, beef, carrots, tomatoes and potatoes, Bob's soup tasted different to Doug’s soup, and Doug’s primary magical strainer was unable to separate the components of the broth, so he needed an even finer magical strainer to resolve the salt, pepper, other spices and Bob’s secret ingredients. (Edible flowers, Willis later admitted…)
Back to the reality of ionic residues on printed circuit assembles: the extract solution was essentially a chemical soup of residues that needed to be separated out into individual species for identification and quantification, and this was achieved in the ion chromatograph by a specialised fractionating column and conductivity detector. Different columns and eluents were used for anions and cations, and the equipment worked at very high pressure although the pipework was of capillary diameter so actual flow-rates were very small, typically 0.25 ml/minute. Using his own system as the example, Pauls explained the function and contribution of each major component. "It might look complicated, but if you appreciate how a domestic plumbing system works, you will have no difficulty in understanding the basic principles." The sample, typically 10 microlitres, was introduced, either manually or with an autosampler, into a sample loop, and a multi-position valve admitted it to the separation column via a guard column designed to protect the separation column from any accidental gross contamination - it could cost $2000 to replace - where it was absorbed on the ion-exchange medium.
Page 1 of 2
Suggested Items
The Global Electronics Association Releases IPC-8911: First-Ever Conductive Yarn Standard for E-Textile Application
07/02/2025 | Global Electronics AssociationThe Global Electronics Association announces the release of IPC-8911, Requirements for Conductive Yarns for E-Textiles Applications. This first-of-its-kind global standard establishes a clear framework for classifying, designating, and qualifying conductive yarns—helping to address longstanding challenges in supply chain communication, product testing, and material selection within the growing e-textiles industry.
IPC-CFX, 2.0: How to Use the QPL Effectively
07/02/2025 | Chris Jorgensen, Global Electronics AssociationIn part one of this series, we discussed the new features in CFX Version 2.0 and their implications for improved inter-machine communication. But what about bringing this new functionality to the shop floor? The IPC-CFX-2591 QPL is a powerful technical resource for manufacturers seeking CFX-enabled equipment. The Qualified Product List (QPL) helps streamline equipment selection by listing models verified for CFX compliance through a robust third-party virtual qualification process.
Advancing Aerospace Excellence: Emerald’s Medford Team Earns Space Addendum Certification
06/30/2025 | Emerald TechnologiesWe’re thrilled to announce a major achievement from our Medford, Oregon facility. Andy Abrigo has officially earned her credentials as a Certified IPC Trainer (CIT) under the IPC J-STD-001 Space Addendum, the leading industry standard for space and military-grade electronics manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
IPC Rebrands as Global Electronics Association: Interview With Dr. John W. Mitchell
06/22/2025 | Marcy LaRont, I-Connect007Today, following a major announcement, IPC is embracing the rapid advancement of technology with a bold decision to change its name to the Global Electronics Association. This name more accurately reflects the full breadth of its work and the modern realities of electronics manufacturing. In this exclusive interview, Global Electronics Association President and CEO Dr. John W. Mitchell shares the story behind the rebrand: Why now, what it means for the industry, and how it aligns with the organization’s mission.