New NTU Microchip Shrinks Radar Cameras to Fit into a Palm
February 23, 2016 | NTUEstimated reading time: 6 minutes
Scientists at Nanyang Technological University, Singapore (NTU Singapore) have developed a chip that allows new radar cameras to be made a hundred times smaller than current ones.
With this NTU technology, radar cameras that usually weigh between 50 kg and 200 kg and are commonly used in large satellites can be made to become as small as palm-sized.
Despite being small, they can produce images that are of the same high quality if not better compared to conventional radar cameras. They are also 20 times cheaper to produce and consume at least 75 per cent less power.
Developed over the past three years at NTU, the promising technology has already secured S$2.5 million in research funding from Singapore government agencies.
The radar chip has attracted the attention of several multinational corporations, and is now being researched for use in Unmanned Aerial Vehicles (UAVs) and satellite applications.
Assistant Professor Zheng Yuanjin from NTU's School of Electrical and Electronic Engineering who led the research, said that the size and effectiveness of the chip will open up new applications not possible previously.
"We have significantly shrunk the conventional radar camera into a system that is extremely compact and affordable, yet provides better accuracy. This will enable high resolution imaging radar technology to be used in objects and applications never before possible, like small drones, driverless cars and small satellite systems," said Asst Prof Zheng.
Advantages over current technology
Current radar camera systems are usually between half and two metres in length and weigh up to 200 kg. They cost more than US$1 million on the market and can consume over 1000 watts in electricity per hour, the energy equivalent of a household air-conditioning unit running for an hour.
Known as Synthetic Aperture Radar (SAR), these large radar cameras are often carried by large satellites and aircrafts that produce detailed images of the Earth's surface. Objects longer than a metre, such as cars and boats, can be easily seen by the radar camera mounted on an aircraft flying at a height of 11 kilometres.
Unlike optical cameras which cannot work well at night due to insufficient light or in cloudy conditions, a radar camera uses microwaves (X-band or Ku-band) for its imaging, so it can operate well in all weather conditions and can even penetrate through foliage.
These detailed images from radar cameras can be used for environmental monitoring of disasters like forest fires, volcano eruptions and earthquakes as well as to monitor cities for traffic congestions and urban density.
But the huge size, prohibitive cost and energy consumption are deterrents for use in smaller unmanned aerial vehicles and autonomous vehicles. In comparison, NTU's new radar chip (2mm x 3mm) when packaged into a module measures only 3cm x 4cm x 5cm, weighing less than 100 grams.
Production costs can go as low as US$10,000 per unit, while power consumption ranges from 1 to 200 watts depending on its application, similar to power-efficient LED TVs or a ceiling fan.
It can also capture objects as small as half a metre which is twice as detailed as the conventional radar camera used in large aircrafts or satellites.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Nortech Systems Incorporated Earns AS9100 Certification for Monterrey, Mexico Facility
11/04/2025 | BUSINESS WIRENortech Systems, Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced that its Monterrey, Mexico, facility has achieved AS9100:D certification.
PsiQuantum, Lockheed Martin Form Strategic Collaboration to Accelerate Quantum Computing for Aerospace and Defense
11/04/2025 | BUSINESS WIREPsiQuantum and Lockheed Martin have signed a memorandum of understanding (MoU) to accelerate the development of quantum computing applications in aerospace and defense.
Aircraft Wire and Cable Market to surpass USD 3.2 Billion by 2034
10/30/2025 | Global Market Insights Inc.The global aircraft wire and cable market was valued at USD 1.8 billion in 2024 and is estimated to grow at a CAGR of 5.9% to reach USD 3.2 billion by 2034, according to recent report by Global Market Insights Inc.
Honeywell Announces Updated Business Segment Structure Ahead Of Aerospace Spin-Off
10/28/2025 | HoneywellHoneywell announced its updated business segment structure ahead of the planned separation of its Aerospace Technologies business, expected in the second half of 2026, and its Solstice Advanced Materials business, expected to be completed on October 30, 2025.
Lockheed Martin Signs Strategic Partnership Framework with Korean Air
10/28/2025 | Lockheed MartinLockheed Martin is collaborating with Korean Air to explore opportunities to support the U.S. government’s (USG) Regional Sustainment Framework (RSF) initiative, as well as expand Maintenance, Repair, Overhaul & Upgrade (MROU) cooperation to third-country markets.