-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
All About Flex: Why Copper is Ideal for Flexible Circuitry
April 13, 2016 | Dave Becker, All FlexEstimated reading time: 3 minutes

While copper may not rank the best in any one of the above criteria, it probably has the best overall rating.
Electrical Conductivity
The following chart[1] ranks the common metals by conductivity:
Copper is the second-most conductive metal (in pure form). The copper used on flexible circuits can be formed by a number of methods such as electro-deposition (ED), rolling/annealing, or a combination of the two. The conductivity of copper by volume on a flexible circuit is not exactly the same as pure copper, but it is quite close.
Thermal Conductivity
Thermal conductivity is highly related to electrical conductivity. Thermal conducting properties are very important for a number of applications, particularly when heat dissipation is critical.
As can be seen from the chart above[2], copper is an excellent thermal conductor, relative to the other common metals.
Cost
Copper is one of the lowest cost metals that are viable for electronic applications. The following chart below shows typical costs by weight, and more importantly by volume.
Spot prices of metal costs can vary significantly from day to day. The costs above are based on one snapshot in time, but one can see that the relative differences are significant. The costs shown are based on spot prices and do not include the costs for processing the metals for electronic fabrication. Aluminum is very inexpensive relative to other metals, but copper is significantly cheaper than gold or silver.
Availability
Availability or abundance of supply tends to be inversely proportional to the cost. Copper is considered plentiful and is stated to have a 40-year supply based on reserves and 200 years based on resources. The difference between reserve and resource is: Reserves are based on viable deposits that have been discovered and are either being mined or are deemed profitable to mine; Resources are based on potentially profitable discovered deposits and undiscovered deposits predicted by geological surveys[3].
Corrosion Resistance
Corrosion resistance in any environment depends on the chemical exposure. The following chart[4] rates common metals by activity, which is an indicator of the likelihood of corrosion in the presence of moisture and ionic contamination.
Copper is in the middle of the pack on the galvanic scale and is often treated, coated or plated to dramatically retard corrosion.
Flexibility
An indicator of flexibility is the Young’s Modulus of Elasticity. This measurement relates to the amount of force it takes to change the elongation direction. The lower the number, the easier it will “stretch.” The chart below shows the Modulus numbers of the more common metals.
It is important to note that the flexibility of copper substrates used in circuit fabrication is highly related to the processing method used to create the foil. Rolled annealed copper goes through a series of rolling steps that elongates the grain, giving it a higher degree of flexibility. Even ED copper, which forms metal foil by electroplating copper onto a rotating stainless steel drum, is quite flexible and suitable for many flex-to-install applications. But the overwhelming favorite copper for flexible circuitry is rolled annealed. It is comparable in cost and offers the insurance of being the most robust with flexibility.
Another critical consideration is ease of processing. Copper is incredibly versatile and works well with a diverse set of circuit fabrication steps including electroplating, immersion and electroless plating, etching and soldering. While many of these processes have been designed around copper, this metal has remained the stand-alone workhorse for more than 50 years of printed circuit board processing.
References
1. www.metaldetectingworld.com.
2. www.tibtech.com
3. copperalliance.org
4. inspectapedia.com
Dave Becker is vice president of sales and marketing at All Flex Flexible Circuits LLC.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.