Optics Breakthrough to Revamp Night Vision
May 25, 2016 | University of SydneyEstimated reading time: 1 minute
A breakthrough by an Australian collaboration of researchers could make infra-red technology easy-to-use and cheap, potentially saving millions of dollars in defence and other areas using sensing devices, and boosting applications of technology to a host of new areas, such as agriculture.
Infra-red devices are used for improved vision through fog and for night vision and for observations not possible with visible light; high-quality detectors cost approximately $100,000 (including the device at the University of Sydney) some require cooling to -200°C.
Now, research spearheaded by researchers at the University of Sydney has demonstrated a dramatic increase in the absorption efficiency of light in a layer of semiconductor that is only a few hundred atoms thick - to almost 99 percent light absorption from the current inefficient 7.7 percent.
The findings will be published overnight in the high-impact journal Optica.
Co-author from the University of Sydney's School of Physics, Professor Martijn de Sterke, said the team discovered perfect thin film light absorbers could be created simply by etching grooves into them.
"Conventional absorbers add bulk and cost to the infrared detector as well as the need for continuous power to keep the temperature down. The ultrathin absorbers can reduce these drawbacks," Professor de Sterke said.
"By etching thin grooves in the film, the light is directed sideways and almost all of it is absorbed, despite the small amount of material - the absorbing layer is less than 1/2000th the thickness of a human hair," he said.
Co-lead author Dr Björn Sturmberg, who carried out the research as a PhD student at the University of Sydney with the support of the Australian Renewable Energy Agency, said the findings did not rely upon a particular material but could be applied to many naturally occurring weak absorbers.
"There are many applications that could greatly benefit from perfectly absorbing ultra-thin films, ranging from defence and autonomous farming robots to medical tools and consumer electronics," Dr Sturmberg said.
The Director of Australia's National Computational Infrastructure (NCI) and co-author, of the paper, Professor Lindsay Botten, said the structures were much simpler to design and fabricate than using existing thin film light absorbers, which required either complex nanostructures, meta-materials and exotic materials or difficult-to-create combinations of metals and non-metals.
"There are major efficiency and sensitivity gains to be obtained from making photo-detectors with less material," he said.
Suggested Items
Solid-State Batteries Enter Pilot Production, Costs Expected to Drop to CNY 0.6–0.7/Wh by 2035
11/01/2024 | TrendForceThe global pursuit and anticipation of applications for solid-state batteries (SSBs) have accelerated the commercialization process of this technology.
HBM5 20hi Stack to Adopt Hybrid Bonding Technology, Potentially Transforming Business Models
10/30/2024 | TrendForceTrendForce reports that the focus on HBM products in the DRAM industry is increasingly turning attention toward advanced packaging technologies like hybrid bonding.
Scrutinizing Solder Printing
09/10/2024 | Nolan Johnson, I-Connect007As members of the technical staff at Indium, Adam Murling, technical manager, and Ron Lasky, senior technologist and professor at Dartmouth University, know their way around metallurgy and solder formulation. I corralled them for a conversation on solder application techniques from the solder’s perspective and their insights did not disappoint.
iPhone 16 Series to Feature A18 Processor, Pricing May Match iPhone 15
09/10/2024 | TrendForceTrendForce reports that Apple's upcoming iPhone 16 series will be powered by the new A18 and A18 Pro processors and will feature a comprehensive DRAM upgrade to support Apple Intelligence.
Young Professionals Spotlight: Process Engineer Kevin Dial, American Standard Circuits
09/05/2024 | Dan Beaulieu, D.B. Management GroupWhen I heard that my friends at American Standard Circuits had hired a new, fresh-out-of-college process engineer, I was anxious to meet him. Now, you get to read this interview. It’s a rare perspective of a young man new to our industry.