Accelerating Design Times for High-Performance Systems-on-Chip
August 1, 2016 | UC San DiegoEstimated reading time: 3 minutes

A team of computer scientists and electrical engineers from four U.S. universities have been awarded a joint project with nearly $5 million in funding from the Defense Advanced Research Projects Agency (DARPA).
Led by University of California San Diego computer-engineering professor Rajesh Gupta, the group of nine faculty members -- five from UC San Diego, one each from UCLA and the University of Michigan, and two professors from Cornell University – will develop a “synthesis methodology for accelerator-centric systems-on-chips and tool flows” that goes by the name CERTUS (Latin for definite, trustworthy or reliable).
Productivity involving the time it takes to design systems-on-chips has remained flat, largely because of the design complexity that is also responsible for rapidly rising costs. Indeed, as much as 50 percent of design and verification time must be devoted to designing high-performance analog parts, customized data-paths, and design exploration to meet schedules.
“All parts of chip design from clocking, sensing circuits to integrated data paths and synthesized random logic must come together in complicated tool flows that are, of necessity, hand-crafted to a specific process and process node,” said CERTUS principal investigator Gupta. “This causes multiple iterations through various design stages, so we need to come up with new methodologies to achieve a dramatic improvement in design times.”
CERTUS is part of the DARPA Circuit Realization at Faster Timescales (CRAFT) effort, which aims to reduce chip design times to a target 16-week design time for an system on a chip, including five weeks of physical design and closure. That represents a 10x improvement over the current time it takes (~ 160 weeks) to design a custom DoD ASIC chip. However, the researchers aim in their first fab run to demonstrate a 5x reduction, i.e., cutting design time by 80 percent. By the end of the project, they plan to demonstrate a 10x cut in design time, i.e., a 90 percent drop. “Reducing the effort required to design and verify leading-edge CMOS ASICs is critical to development of next-generation defense systems that require high computational performance in a power-constrained environment,” said DARPA Microsystems Technology Office (MTO) Program Manager Dr. Linton Salmon.
To achieve that goal, the CERTUS team proposes to develop learning algorithms that spot and enhance ‘regularity’ in high-level descriptions, build sophisticated pipelines, and enable system architects to compose blocks, including analog blocks that are difficult to automate.
“We propose a synthesis methodology that targets not only the design tools but also the flow of design data across different tools that are akin to business processes,” said UCLA professor Mani Srivastava, noting that the project must take into account the role of commercial tools and third-party intellectual property (IP) in the design process. “Once micro-architectural design is complete, the flow through commercial tools proceeds rapidly but faces tortuous repetitions to close the ‘last MHz’ gap in performance.”
The project will focus on high-performance systems-on-chips that contain one or more processing elements, usually in the form of an IP block produced from commercial vendors and supported by publicly-available software development tools. In the first phase of the project, researchers will design and build an accelerator-centric systems on a chip for use in autonomous vehicles under the Autonomy project with Northrop-Grumman Aerospace Systems and UC San Diego’s new Contextual Robotics initiative. In phase two, the focus will be on process porting issues, and the University of Michigan will take the lead on an ARM-hosted, accelerator-based implementation of the DARPA-selected sytems on a chip design (leveraging a decade-old research agreement between ARM and Michigan). The sytem on a chipwill contain an array of processing cores based on the RISC V processor from Berkeley.
The CERTUS team is focused on devising compositional methods that allow systematic reuse of designed blocks, including high-performance analog circuit blocks.
At UC San Diego, Gupta pulled together a group from the Departments of Computer Science and Engineering and Electrical and Computer Engineering at the Jacobs School of Engineering. Computer science-based faculty include Gupta and Michael Taylor (who was the lead architect of the DARPA-funded MIT Raw 16-core multicore processor chip). They will collaborate with electrical engineering professors Patrick Mercier and Ian Galton (the inventor of a new type of high-performance, phase-locked loop, or PLL, implemented as the clock generator in the latest Qualcomm Snapdragon mobile processor). Other investigators on the DARPA project include UCLA’s Mani Srivastava, Cornell professors Zhiru Zhang and Christopher Batten, and Ron Dreslinski at the University of Michigan.
Gupta and Srivastava were, respectively, director and deputy director of the now-ending Variability Project funded by the National Science Foundation in 2010 under its Expeditions in Computing program.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
KYZEN Partners with LPW to Elevate High Purity Cleaning with Cutting-Edge Cyclic Nucleation Technology in North America
08/13/2025 | KYZEN'KYZEN, a global leader in advanced cleaning solutions, has reached a major milestone in high-purity cleaning with the addition of a state-of-the-art Vacuum Cyclic Nucleation System at its North American Application Lab.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.