Going Beyond 3D Printing to Add a New Dimension for Additive Manufacturing
August 24, 2016 | Lawrence Livermore National LaboratoryEstimated reading time: 2 minutes

A team of Lawrence Livermore National Laboratory researchers has demonstrated the 3D printing of shape-shifting structures that can fold or unfold to reshape themselves when exposed to heat or electricity. The micro-architected structures were fabricated from a conductive, environmentally responsive polymer ink developed at the Lab.
In an article published recently by the journal Scientific Reports (link is external), lab scientists and engineers revealed a strategy for creating boxes, spirals and spheres from shape memory polymers (SMPs), bio-based "smart" materials that exhibit shape-changes when resistively heated or when exposed to the appropriate temperature.
Lab researcher Jennifer Rodriguez examines a 3D printed box that was "programmed" to fold and unfold when heated
While the approach of using responsive materials in 3D printing, often known as "4D printing," is not new, LLNL researchers are the first to combine the process of 3D printing and subsequent folding (via origami methods) with conductive smart materials to build complex structures.
In the paper, the researchers describe creating primary shapes from an ink made from soybean oil, additional co-polymers and carbon nanofibers, and "programming" them into a temporary shape at an engineered temperature, determined by chemical composition. Then the shape-morphing effect was induced by ambient heat or by heating the material with an electrical current, which reverts the part's temporary shape back to its original shape.
Through a direct-ink writing 3D printing process, LLNL researchers produced several types of structures, including a stent that expanded after being exposed to heat."It's like baking a cake," said lead author Jennifer Rodriguez, a postdoc in LLNL's Materials Engineering Division. "You take the part out of the oven before it's done and set the permanent structure of the part by folding or twisting after an initial gelling of the polymer."
Ultimately, Rodriguez said, researchers can use the materials to create extremely complex parts.
"If we printed a part out of multiple versions of these formulations, with different transition temperatures, and run it through a heating ramp, they would expand in a segmented fashion and unpack into something much more complex," she said.
Through a direct-ink writing 3D printing process, the team produced several types of structures -- a bent conductive device that morphed to a straight device when exposed to an electric current or heat, a collapsed stent that expanded after being exposed to heat and boxes that either opened or closed when heated.
The technology, the researchers said, could have applications in the medical field, in aerospace (in solar arrays or antennae that can unfold), as well as flexible circuits and robotic devices.
"We have these materials with 3D structures but they have extra smart properties; they can retain a memory of the previous structure," said Lab staff scientist James Lewicki. "It opens up a whole new property set. If you can print with these polymer composites you can build things and electrically activate them to unfold. Instead of a dumb lump, you are left with this sentient, responsive material."
The research derives from a Laboratory Directed Research & Development project to develop high-performance 3D-printed carbon fiber composites.Others contributing to the paper were Lab scientists and engineers Cheng Zhu, Eric Duoss, Thomas Wilson and Chris Spadaccini.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
KYZEN Partners with LPW to Elevate High Purity Cleaning with Cutting-Edge Cyclic Nucleation Technology in North America
08/13/2025 | KYZEN'KYZEN, a global leader in advanced cleaning solutions, has reached a major milestone in high-purity cleaning with the addition of a state-of-the-art Vacuum Cyclic Nucleation System at its North American Application Lab.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.