All About Flex: Lead-Free Soldering Flexible Circuits
September 22, 2016 | Dave Becker, All FlexEstimated reading time: 3 minutes
Ever since the European community adopted the RoHS directive in 2006, the U.S. electronics industry has been steadily increasing its use of lead-free solder. Medical was the first U.S. industry to go totally lead-free. Today, a significant percentage of electronics soldering is done with lead-free solder. After several years of refinement and withstanding some mischaracterizations, lead-free soldering is proving to be cost effective and reliable.
While lead-free solder is reliable, there are differences in materials and processing that need to be understood to ensure a robust electronics design.
Material Composition: The most widely used lead-free solder paste is a tin/silver/copper alloy (Sn/Ag/Cu). These are available in slightly different combinations; the following are the more common ones:
- Sn96.5/Ag3.0/Cu0.5
- Sn95.5/Ag3.8/Cu0.7
- Sn95.5/Ag4.0/Cu0.5
There are alloys other than tin/silver/copper that can be used for lead-free soldering; most of these are for non-electronic applications. The optimal choice of alloy depends on the type of surface to solder and the application for the flexible circuit.
Cosmetic Appearance: The classic tin-lead solder joints were shiny and smooth. In fact, a defective solder joint often had a dull, rough appearance. This is not the case for lead-free solder joints, which have a less shiny appearance. Those who are not familiar with lead-free solder will immediately flag the dull appearance as defective joints. The dull appearance in solder joints is not indicative of the quality of the solder joint, but simply due to the inherent properties of the alloy. See Figure 1 for a side-by-side comparison.
Figure 1: Lead-free vs. tin-lead. (Source: CEDOS Electronics)
Process Temperature: Lead-free solder starts to reflow around 218°C, whereas tin-lead solder will reflow around 188°C. The higher temperature can have an adverse impact on the fixtures, equipment and materials used on a flexible circuit. When introducing a new part number requiring lead-free solder, an engineering review should occur to insure all materials have proper temperature compatibility.
Mechanical Strength: Lead-free solder does not have the mechanical strength of the traditional tin-lead solder. This is one of the reasons that the lead-free is not used in military or aerospace applications. The RoHS directive exempts military and some aerospace products. While tin-lead solder has better mechanical properties, there are ways to address mechanical strength issues with lead-free solder. Adding epoxy or conformal coating to reinforce the bond areas are ways to add robustness to designs requiring a high level of mechanical strength.
Flux: As with tin-lead soldering, there are two basic types of fluxes used with lead-free soldering: water washable flux and no-clean flux. The water washable flux must be completely removed after soldering. Water wash generally works well if there is adequate room under the components to rinse away residue. If the component density and profile do not allow thorough rinsing, then no-clean flux should be used. No-clean flux leaves a visible residue, which some may find objectionable. There may be a temptation to require residue removal with a cleaning process. But experts advise against removing the residue of a no-clean flux. No-clean flux residue is designed to encapsulate any contaminants that could potentially cause electrical problems in the field. By cleaning the no-clean flux, there is risk some of the contaminants will remain and create potential reliability problems.
Testing: Reliability and electrical testing are the same for both lead-free and tin-lead soldering processes. There are a couple of tests to determine if a given component has lead. One is to apply a chemical that simply changes color if there is lead in the solder. One could also use an atomic absorption spectrophotometer that will provide the exact content of the metal. These tests are mainly applicable to ensure an incoming product is lead-free, or to prove that a product meets RoHS requirements. During circuit fabrication, in-process material control should insure solder paste is lead-free.
An electronic packaging designer who is unfamiliar with lead-free processes will need to be educated on the various design, material, process, component and inspection nuances that lead-free soldering presents. Many circuit suppliers are able to provide a significant amount of design support for applications requiring lead-free solder.
Dave Becker is vice president of sales and marketing at All Flex Flexible Circuits LLC.
Suggested Items
Indium Technical Expert to Present at SiP Conference China
11/25/2024 | Indium CorporationIndium Corporation Senior Area Technical Manager for East China Leo Hu is scheduled to deliver a presentation on Low-Temperature Solder Material in Semiconductor Packaging Applications at SiP China Conference 2024 on November 27 in Suzhou, China.
Indium Corporation to Showcase Precision Gold Solder Solutions at MEDevice Silicon Valley 2024
11/18/2024 | Indium CorporationIndium Corporation® will feature its high-reliability AuLTRA® MediPro gold solder solutions at MEDevice Silicon Valley, taking place on November 20-21 in Silicon Valley, California. AuLTRA® MediPro is a family of high-performance, precision gold solder solutions for critical medical applications.
AIM to Highlight NC259FPA Ultrafine No Clean Solder Paste at SMTA Silicon Valley Expo & Tech Forum
11/14/2024 | AIMAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce its participation in the upcoming SMTA Silicon Valley Expo & Tech Forum taking place on December 5 at the Fremont Marriott Silicon Valley in Fremont, California.
Data-driven Precision in PCBA Manufacturing
11/13/2024 | Julie Cliche-Dubois, CogiscanThe intricacies involved in electronics manufacturing require more than just expensive equipment and skilled technicians; they necessitate an accurate understanding of the entire production flow, informed and driven by access and visibility to reliable data.
Rehm Thermal Systems Mexico Wins the Mexico Technology Award 2024 in the Category Convection Soldering
11/13/2024 | Rehm Thermal SystemsRehm Thermal Systems Mexico has won the Mexico Technology Award in the category convection soldering with the patented mechatronic curtain for convection soldering systems.