A Sweet Solution to the Thermal Energy Storage Problem
September 26, 2016 | CORDISEstimated reading time: 3 minutes

As scientists and researchers continue to seek new ways to reduce dependency on fossil fuels and decrease the amount of CO2 put into the air, one area that is sometimes overlooked is how heat is stored. For example, although much research has gone into collecting and using solar and wind energy, little has gone towards answering the question of how to store excess energy for the times when the sun is down or the wind isn’t blowing.
Traditionally, the answer to this storage question has been batteries or, in some cases, pumped hydroelectric storage – two solutions that are far from perfect. In fact, some of their inefficiencies can actually cancel out any environmental benefit created by using solar and wind energy in the first place.
One possible solution to the storage question is to convert the energy into thermal energy and store it in thermal energy storage facilities, which have been shown to be generally more efficient, better at capturing wasted heat and able to provide more low-cost energy. However, before we can make widespread use of thermal energy, research into the development of cost-effective, high-density storage technology is needed.
And this is exactly what the researchers from the EU-funded SAM.SSA project delivered.
Thinking outside the box
The project’s objective was to develop new phase change materials (PCM) for seasonal thermal energy storage applications (STES) in the range of medium temperatures. Researchers wanted these materials to be low-cost, environmentally sound, safe and easy to use. Furthermore, the materials would have to be able to serve as a long-term storage solution that provided significantly lower levels of thermal loss than currently available options.
This was an innovative approach to the problem as PCM are not typically viewed as a STES option. This is due to their insufficient energy densities and their high risk of solidification during storage – a phenomena caused by inadequate insulation for maintaining temperatures beyond the melting point.
The magical material
For SAM.SSA, the magic material for overcoming the PCM problem was sugar alcohol, a common and abundantly available waste product of the food industry. Also known as molecular alloys based on sugar alcohols (MASA), this material allows for the adjustment of the melting point and, as a result, significantly increases energy density. According to a recent article on the project published in ‘The Journal of Physical Chemistry’, sugar alcohols, when mixed with carbon nanotubes, create a material capable of storing renewable energy as heat.
The project focused on sugar alcohols as they permit high levels of undercooling, which minimises the risk of spontaneous PCM solidification. They also reduce the requirements for insulation, as well as thermal loss during long-term storage. With the application of a local thermal shock or ultrasound, nucleation and subsequent crystallisation is induced, allowing for an easy and efficient discharge of the energy from the storage system.
Laying the foundation
When carbon nanotubes of varying sizes are mixed with two types of sugar alcohols – erythritol and xylitol – researchers found that, with one exception, heat transfer within a mixture would decrease as the nanotube diameter decreased. They also found that, as a general rule, higher density combinations meant better heat transfer. These findings are significant as they lay the foundation for the future design of sugar alcohol-based energy storage systems.
At the time of the project’s conclusion, researchers had created an early-stage prototype for treating pure sugar alcohol or sugar alcohol blends to achieve crystallisation. With basic concepts for further prototypes already in the works, along with exploitation strategies, SAM.SSA researchers are optimistic about the use of MASA as an answer to the problems of thermal energy storage.
Suggested Items
Ansys Strengthens Collaboration with TSMC on Advanced Node Processes Certification and 3D-IC Multiphysics Design Solutions
04/24/2025 | PRNewswireThrough continued collaboration with TSMC, Ansys announced enhanced AI-assisted workflows for radio frequency (RF) design migration and photonic integrated circuits (PICs), and new certifications for its semiconductor solutions. Together,
Explore Thermal Management Solutions in Latest Podcast Series—New Episode Now Available
04/30/2025 | I-Connect007I-Connect007 is excited to share the latest episode in our new podcast series! In this episode, Ryan returns to discuss practical strategies for managing heat, starting early in the design planning and specification phases. After all, prevention means there’s less to mitigate later.
Google Signs Taiwan’s First Corporate Geothermal Energy Deal in Asia-Pacific
04/23/2025 | I-Connect007 Editorial TeamGoogle announced that it has entered Taiwan’s first corporate geothermal power purchase agreement (PPA) with Baseload Capital to expand access to around-the-clock clean energy in the Asia-Pacific region and beyond.
Laird Thermal Systems Announces Max Kley as New CEO
04/18/2025 | Laird Thermal SystemsLaird Thermal Systems (LTS) is pleased to announce the appointment of Dr. Max Kley as its new Chief Executive Officer, effective April 1, 2025. Max Kley brings a wealth of international leadership experience to LTS, having successfully led and developed businesses across the USA, Europe, and Asia.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.