New Efficient, Low-Cost Method to Hydrogenate Graphene with Visible Light
October 7, 2016 | Uppsala UniversityEstimated reading time: 2 minutes

An environmentally friendly, efficient and low-cost method for hydrogenation of graphene with visible light has been developed by researchers at Uppsala University and AstraZeneca Gothenburg, Sweden. The research study is presented in an article in Nature Communications An environmentally friendly, efficient and low-cost method for hydrogenation of graphene with visible light has been developed by researchers at Uppsala University and AstraZeneca Gothenburg, Sweden. The research study is presented in an article in Nature Communications ("Metal-Free Photochemical Silylations and Transfer Hydrogenations of Benzenoid Hydrocarbons and Graphene").
efficient, low-cost method to hydrogenate graphene with visible light
The study shows that the two-dimensional and atom-thin carbon material graphene reacts with formic acid in a water solution upon irradiation with visible light. In the reaction, formic acid acts as masked hydrogen and a material is produced where hydrogen extensively has been added to graphene. One says that graphene has been hydrogenated. The study was performed by Assoc. Prof. Henrik Ottosson’s research group at the Department of Chemistry – Ångström Laboratory, together with colleagues in Chemistry, Physics and Engineering at Uppsala University and at AstraZeneca Gothenburg.
“The reaction is convenient and cheap, and hydrogenated graphene may be applied within areas such as hydrogen storage. Additionally, upon functionalization of graphene one can open a band gap and this fact is of high relevance for electronics applications”, says Henrik Ottosson.
Yet, graphene research is a side-project in Henrik Ottosson’s group. The group normally studies the behaviours of various aromatic hydrocarbons upon irradiation, and they apply a rule, the so-called Baird’s rule, which can be derived through chemically applied quantum mechanics.
Chemical compounds that are aromatic have an inherently high stability and often they are not easy to degrade. Benzene is the most well known aromatic compound and more than half of all known chemical compounds contain aromatic groups.
The high stability of aromatic compounds is explained by Hückel’s ‘4n+2’ rule, but this rule is only valid for compounds in their electronic ground states. Upon exposure to light of a certain wavelength, the aromatic compounds reach electronically excited states. According to Baird, compounds that are aromatic in the ground state become antiaromatic and reactive in the excited state. The rule, neglected for decades, can now be used to describe various behaviours of aromatic compounds when irradiated.
Using Baird’s rule, Henrik Ottosson’s group develops new light-initiated reactions. First, they studied addition of hydrosilanes to benzenes, naphthalene and gradually larger polycyclic aromatic hydrocarbons (hydrosilanes are compounds that can be regarded as heavy analogues of hydrogen). Despite the fact that it is not possible to explain if, and how, Baird’s rule can be applied to graphene (an essentially infinitely large polycyclic aromatic hydrocarbon), the group explored graphene chemistry and found a very efficient addition reaction when using formic acid.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.
Real Time with... IPC APEX EXPO 2025: Winner of the IPC Best Student Poster Award
04/29/2025 | Real Time with...IPC APEX EXPOSebastian Carrillo, winner of the Best Student Technical Poster Award, shares insights on his research in nanotechnology and plasmonics. His work on a metal insulator nano array focuses on light-matter interactions at the nanoscale. With advancements in manufacturing, applications include sensing technologies and photovoltaic systems. Sebastian discusses his project involving simulations and optical experiments. His career goals are in research, and he encourages students to seize academic opportunities.
ITRI Named a Top 100 Global Innovator for the Ninth Time
04/28/2025 | PRNewswireThe Industrial Technology Research Institute (ITRI) was officially honored at the 2025 Top 100 Global Innovators Award Ceremony hosted by Clarivate in Taipei.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.