New Efficient, Low-Cost Method to Hydrogenate Graphene with Visible Light
October 7, 2016 | Uppsala UniversityEstimated reading time: 2 minutes

An environmentally friendly, efficient and low-cost method for hydrogenation of graphene with visible light has been developed by researchers at Uppsala University and AstraZeneca Gothenburg, Sweden. The research study is presented in an article in Nature Communications An environmentally friendly, efficient and low-cost method for hydrogenation of graphene with visible light has been developed by researchers at Uppsala University and AstraZeneca Gothenburg, Sweden. The research study is presented in an article in Nature Communications ("Metal-Free Photochemical Silylations and Transfer Hydrogenations of Benzenoid Hydrocarbons and Graphene").
efficient, low-cost method to hydrogenate graphene with visible light
The study shows that the two-dimensional and atom-thin carbon material graphene reacts with formic acid in a water solution upon irradiation with visible light. In the reaction, formic acid acts as masked hydrogen and a material is produced where hydrogen extensively has been added to graphene. One says that graphene has been hydrogenated. The study was performed by Assoc. Prof. Henrik Ottosson’s research group at the Department of Chemistry – Ångström Laboratory, together with colleagues in Chemistry, Physics and Engineering at Uppsala University and at AstraZeneca Gothenburg.
“The reaction is convenient and cheap, and hydrogenated graphene may be applied within areas such as hydrogen storage. Additionally, upon functionalization of graphene one can open a band gap and this fact is of high relevance for electronics applications”, says Henrik Ottosson.
Yet, graphene research is a side-project in Henrik Ottosson’s group. The group normally studies the behaviours of various aromatic hydrocarbons upon irradiation, and they apply a rule, the so-called Baird’s rule, which can be derived through chemically applied quantum mechanics.
Chemical compounds that are aromatic have an inherently high stability and often they are not easy to degrade. Benzene is the most well known aromatic compound and more than half of all known chemical compounds contain aromatic groups.
The high stability of aromatic compounds is explained by Hückel’s ‘4n+2’ rule, but this rule is only valid for compounds in their electronic ground states. Upon exposure to light of a certain wavelength, the aromatic compounds reach electronically excited states. According to Baird, compounds that are aromatic in the ground state become antiaromatic and reactive in the excited state. The rule, neglected for decades, can now be used to describe various behaviours of aromatic compounds when irradiated.
Using Baird’s rule, Henrik Ottosson’s group develops new light-initiated reactions. First, they studied addition of hydrosilanes to benzenes, naphthalene and gradually larger polycyclic aromatic hydrocarbons (hydrosilanes are compounds that can be regarded as heavy analogues of hydrogen). Despite the fact that it is not possible to explain if, and how, Baird’s rule can be applied to graphene (an essentially infinitely large polycyclic aromatic hydrocarbon), the group explored graphene chemistry and found a very efficient addition reaction when using formic acid.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.