Exceptionally Robust Quantum States Found in Industrially Important Semiconductor
October 17, 2016 | University of ChicagoEstimated reading time: 2 minutes

Harnessing solid-state quantum bits, or qubits, is a key step toward the mass production of electronic devices based on quantum information science and technology. However, realizing a robust qubit with a long lifetime is challenging, particularly in semiconductors comprising multiple types of atoms.
The close collaboration between experiments in Prof. David Awschalom’s group and theory and simulations in Prof. Giulia Galli’s group, both in the Institute for Molecular Engineering, has enabled a crucial step toward solid-state qubits in industrially important semiconductors. In a paper, published Sept. 29 in Nature Communications, the two groups showed that electron qubits bound to atom-like defects in a commercial silicon carbide wafer can exhibit the longest electronic coherence times ever measured in a natural crystal.
“Quantum coherence underlies all quantum information technologies, such as quantum communication and quantum sensing. However, the coherence time in materials is eventually limited by the magnetic noise produced by the fluctuating nuclear spins in a crystal,” said Hosung Seo, an IME postdoctoral researcher and the paper’s lead author.
Defects in silicon carbide have recently attracted attention as potential candidates for solid-state qubits. Due to its extensive use in the optoelectronics and power electronics industries, silicon carbide also has a strong potential for mass production.
However, spin qubits in silicon carbide have been expected to have inherently short coherence times because of the high concentration of magnetic nuclei in the crystals. Counterintuitively, the electron coherence time in silicon carbide reaches 1.3 milliseconds—the longest time measured in a naturally isotopic crystal.
Based on the tight integration of theory and experiment, the two IME groups identified the key mechanisms behind the remarkably robust spin coherence in silicon carbide. They found that the binary nature of its crystal plays a central role in suppressing the magnetic noise produced by the nuclear spin fluctuation.
“Our work has important implications beyond silicon carbide. The essential physics and the dynamics responsible for the coherence found in silicon carbide, a binary crystal, may allow qubits in ternary and quaternary crystals to have even longer spin coherence times,” said Abram Falk, now a researcher at IBM’s T.J. Watson Research Center and the paper’s primary experimental author.
Seo and Falk also emphasized that interesting host crystals with useful functionalities are normally found in binary or ternary crystals such as carbides, nitrides and oxides. The results suggest that developing defect spin qubits in complex polyatomic crystals would be a promising route to realize novel, multifunctional, quantum systems.
Suggested Items
Worldwide Silicon Wafer Shipments Increase 2% Year-on-Year in Q1 2025
04/30/2025 | SEMIWorldwide silicon wafer shipments increased 2.2% year-on-year (YoY) to 2,896 million square inches (MSI) from the 2,834 MSI recorded during the same quarter of 2024, the SEMI Silicon Manufacturers Group (SMG) reported in its quarterly analysis of the silicon wafer industry.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
Real Time with... IPC APEX EXPO: Silicon Geometry's Signal Integrity Impact on PCBs
04/24/2025 | Marcy LaRont, I-Connect007At IPC APEX EXPO 2025, Kris Moyer addressed the importance of understanding the impact of silicon geometry reduction on signal integrity and PCB performance. Kris says signal integrity considerations are necessary for so many designs today, regardless of clock frequency. He discusses valuable insights from attendees regarding embedded resistor technology and the effects of radiation on smaller silicon features in aerospace applications.
Alphawave Semi Delivers Foundational AI Platform IP for Scale-Up and Scale-Out Networks
04/23/2025 | BUSINESS WIREAlphawave Semi, a global leader in high-speed connectivity and compute silicon for the world’s technology infrastructure, bolsters its leadership in foundational AI silicon connectivity subsystems through silicon proven chiplets and IP subsystems on advanced process nodes and package types. This is set to be showcased at the TSMC 2025 North America Technology Symposium.
STMicroelectronics Details Company-Wide Program to Reshape Manufacturing Footprint and Resize Global Cost Base
04/14/2025 | STMicroelectronicsSTMicroelectronics N.V., a global semiconductor leader serving customers across the spectrum of electronics applications, disclosed further elements of its program to reshape its global manufacturing footprint.