Taking a Leap in Bioinspired Robotics
December 16, 2016 | MITEstimated reading time: 7 minutes
In 2009, Kim accepted an assistant professorship in MIT’s Department of Mechanical Engineering, where he established his Biomimetic Robotics Lab and set a specific research goal: to design and build a four-legged, cheetah-inspired robot.
“We chose the cheetah because it was the fastest of all land animals, so we learned its features the best, but there are many animals with similarities [to cheetahs],” Kim says. “There are some subtle differences, but probably not ones that you can learn the design principles from.”
In fact, Kim quickly learned that in some cases, it may not be the best option to recreate certain animal behaviors in a robot.
“A good example in our case is the galloping gait,” Kim says. “It’s beautiful, and in a galloping horse, you hear a da-da-rump, da-da-rump. We were obsessed to recreate that. But it turns out galloping has very few advantages in the robotics world.”
Animals prefer specific gaits at a given speed due to a complex interaction of muscles, tendons, and bones. However, Kim found that the cheetah robot, powered with electric motors, exhibited very different kinetics from its animal counterpart. For example, with high-power motors, the robot was able to trot at a steady clip of 14 miles per hour — much faster than animals can trot in nature.
“We have to understand what is the governing principle that we need, and ask: Is that a constraint in biological systems, or can we realize it in an engineering domain?” Kim says. “There’s a complex process to find out useful principles overarching the differences between animals and machines. Sometimes obsessing over animal features and characteristics can hinder your progress in robotics.”
A “secret recipe”
In addition to building bots in the lab, Kim teaches several classes at MIT, including 2.007, which he has co-taught for the past five years.
“It’s still my favorite class, where students really get out of this homework-exam mode, and they have this opportunity to throw themselves into the mud and create their own projects,” Kim says. “Students today grew up in the maker movement and with 3-D printing and Legos, and they’ve been waiting for something like 2.007.”
Kim also teaches a class he created in 2013 called Bioinspired Robotics, in which 40 students team up in groups of four to design and build a robot inspired by biomechanics and animal motions. This past year, students showcased their designs in Lobby 7, including a throwing machine, a trajectory-optimizing kicking machine, and a kangaroo machine that hopped on a treadmill.
Outside of the lab and the classroom, Kim is studying another human motion: the tennis swing, which he has sought to perfect for the past 10 years.
“In a lot of human motion, there’s some secret recipe, because muscles have very special properties, and if you don’t know them well, you can perform really poorly and injure yourself,” Kim says. “It’s all based on muscle function, and I’m still figuring out things in that world, and also in the robotics world.”
Page 2 of 2Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.