Three-layer Nanoparticle Catalysts Improve Zinc-Air Batteries
January 4, 2017 | A*STAREstimated reading time: 2 minutes

Nanoparticles containing three different layers of material can help to boost the performance of a zinc-air battery, A*STAR researchers have found.
Zinc-air batteries are cheap, have a high energy density, and last for a very long time. Their use of a water-based electrolyte makes them safer than other batteries, so they’re often found in medical applications, such as hearing aids and heart monitoring devices.
The battery’s negative electrode contains zinc metal, which gives up electrons when it reacts with hydroxide ions in the electrolyte . Those electrons generate a current as they flow to the positive electrode, where they react with oxygen from the air to produce more hydroxide ions.
The sluggishness of the reaction with oxygen limits the battery’s voltage output and its performance at high current. Finding a catalyst to speed up the reaction could yield higher power and energy densities, opening a wider range of potential applications.
Yun Zong and Zhaolin Liu of the A*STAR Institute of Materials Research and Engineering and colleagues have developed a nanoparticle catalyst that could fit the bill. The particles are 20–50 nanometers across, with a cobalt core encased by an inner shell of cobalt oxide, which is surrounded by an outer shell of pyrolyzed polydopamine (PPD), a form of carbon ‘dotted’ with nitrogen atoms. These nanoparticles are coated on a porous carbon support that acts as an electrode. Their structure helps to prevent them from leaching cobalt or clumping together, and the protective outer shell also makes the nanoparticles more durable.
These three-layer nanoparticles efficiently transformed oxygen to hydroxide in a single step. The team suggests that nitrogen atoms in the PPD shell help to attract and make oxygen atoms more reactive on their way to catalytically active sites in the cobalt oxide and PPD. Meanwhile, the cobalt core and PPD shell help electrons to flow efficiently to the oxygen atoms. In contrast, similar particles containing only cobalt and cobalt oxide, or PPD alone, transformed oxygen in a two-step process that produced hydroperoxide, an undesirable and corrosive intermediate.
The researchers tested their electrode in a zinc-air battery (see image), and found that it could produce a current of five milliamps per square centimeter of electrode at 1.36 volts for five days, outperforming an electrode that relied on a conventional platinum catalyst.
“The next stage of this research includes the simplification of the synthetic route to facilitate large scale synthesis of the nanoparticles, and exploitation of other catalytic systems following the similar strategy,” says Zong.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.