A New Method for Quick and Precise Measurement of Quantum States
January 11, 2017 | Vienna University of TechnologyEstimated reading time: 3 minutes
Nuclear spin tomography is an application in (human) medicine known from medical institutions. The patient absorbs and re-emits electromagnetic radiation in all directions in space. They are detected and 3D images or 2D slice images are reconstructed from that data. Set in the framework of a fundamental science laboratory, the patient is replaced by a quantum object and the electromagnetic radiation by quantum measurement. The result is a procedure referred to as quantum state tomography.
Reconstructing quantum states without post-processing
Quantum state tomography is the process of reconstructing – or more precisely completely characterizing – the quantum state of an object as it is emitted by its source, before a possible measurement or interaction with the environment takes place. This technique has become an essential tool in the emerging field of quantum technologies.
The theoretical framework of quantum state tomography dates back to the 1970s. Its experimental implementations are nowadays routinely carried out in a wide variety of quantum systems. The basic principle of quantum state tomography – as of is medical counterpart – is to repeatedly perform measurements from different spatial directions on the quantum systems in order to uniquely identify the system’s quantum state.
Nevertheless, for quantum state tomography a lot of computational post-processing of the measured data is required to deduce the initial quantum state from the observed measurement results – all together a high expenditure.
Consequently, in 2011 a novel, more direct tomographical method was established that makes it possible to determine the quantum state without the need for post-processing. However, that novel method had a major drawback: it uses minimally disturbing measurements, so called weak measurements, to determine the system’s quantum state.
The basic idea behind weak measurements is to gain very little information about the observed system, by keeping the disturbance, caused by the measurement process, (negligible) small. Usually, a measurement has a huge impact on a quantum system, causing typical quantum phenomena, such as entanglement or interference, to vanish irretrievably. Since the amount of information gained in this procedure is very small, the measurements have to be repeated multiple times – a huge disadvantage of this measurement procedure in practical applications.
A research team at the Institute of Atomic and Subatomic Physics of TU Wien headed by Stephan Sponar now managed to combine these two methods, benefitting from both.
Schematic illustration of an interferometric setup
“We were able to further develop the established method so that the need of weak measurements becomes obsolete. Thus, we were able to integrate usual, so-called strong measurements, in the direct measurement procedure of the quantum state. Consequently, it is possible to determine the quantum state with higher precision and accuracy in a much shorter time compared to the approach with weak measurements – a tremendous progress.”, explains Tobias Denkmayr the first author of the paper.
These results have now been published in the journal Physical Review Letters ("Experimental Demonstration of Direct Path State Characterization by Strongly Measuring Weak Values in a Matter-Wave Interferometer").
Page 1 of 2
Suggested Items
The Indoor Lab Partners with MARTAC Tactical Systems
05/20/2025 | BUSINESS WIREThe Indoor Lab, a leader in LiDAR-based perception and real-time operational intelligence, announced a strategic partnership with MARTAC Tactical Systems, the premier developer of Unmanned Surface Vehicles.
AV’s Tomahawk Awarded $5.1M Contract for Human-Machine Integrated Formations Project by U.S. Army RCCTO
05/20/2025 | BUSINESS WIRETomahawk GCS, an AeroVironment (“AV”) product line specializing in autonomous and intelligent multi-domain systems, has been awarded a $5.1 million contract to support the U.S. Army Rapid Capabilities and Critical Technologies Office (RCCTO) Human-Machine Integrated Formations (HMIF) rapid prototyping project.
FocalPoint Announces Strategic Collaboration with STMicroelectronics to Deliver an Enhanced GNSS Solution for Automotive
05/20/2025 | PRNewswireFocalPoint, a UK-based software company providing next-gen positioning solutions for automotive, wearables and smartphones, has announced a strategic collaboration with STMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications.
Sanmina Announces Acquisition of Data Center Infrastructure Manufacturing Business of ZT Systems from AMD
05/19/2025 | PRNewswireSanmina Corporation, a leading integrated manufacturing solutions company, announced that it has entered into a definitive agreement to acquire the data center infrastructure manufacturing business of ZT Systems, a leading provider of Cloud and AI infrastructure to the world's largest hyperscalers, from AMD.
AI Helps Build Smarter, More Resilient Power Grids
05/16/2025 | BUSINESS WIREAs society’s reliance on electricity deepens, artificial intelligence (AI) is reshaping how we manage power grids and optimize energy sources.