Panasonic Commercializes High Heat Resistance Circuit Board Material for Automotive Use
January 11, 2017 | Panasonic CorporationEstimated reading time: 3 minutes

Panasonic Corporation announced today that it has commercialized its High Heat Resistance Halogen-free Multi-layer Circuit Board Material for automotive electronic control unit (ECU) circuit boards. The company will start mass production in April 2017. The product's high heat resistance and excellent tracking resistance[1] will improve the reliability of ECU circuit boards in high-temperature environments.
The number of ECUs mounted per vehicle has been on the rise with advances in the electrification of automobiles. ECUs are often mounted in engine compartments to preserve passenger compartment space, and therefore require resistance to high temperatures. The heat generated by high-performance ECU components themselves also needs to be addressed. Furthermore, circuit board materials need to be increasingly resistant to high temperatures to cope with the larger currents and higher voltages carried by HEV and EV ECU circuits. In the past, improving heat and tracking resistances usually resulted in lower processability of circuit boards due to materials properties. To resolve this issue, Panasonic has commercialized its High Heat Resistance Halogen-free Multi-layer Circuit Board Material, which features high heat and tracking resistances as well as excellent circuit board processability by adopting its unique resin design and compounding technologies based on the quality developed for automotive products.
Panasonic's new multi-layer circuit board material has the following features:
1. Improving the reliability of ECU circuit boards in high-temperature environments by achieving high heat resistance
The glass transition temperature (Tg)[2]: 175°C (DSC(1))
Panasonic's conventional material(2): 148°C
2. Excellent tracking resistance; compatible with large currents and high voltages
Achieved tracking resistance: CTI ≥ 600 V
Panasonic's conventional material*2: 600 V > CTI ≥ 400 V
3. Achieving excellent processability while also improving high heat and tracking resistances
Suitable applications:
Automotive ECUs, automotive modules, HEV/EV power control unit, DC/AC converter substrates
Panasonic Technology
1. Improving the reliability of ECU circuit boards in high-temperature environments by achieving high heat resistance
ECUs mounted in engine compartments, plus the heat generated by high-performance ECU components themselves, have created new requirements for high heat resistance. In some cases, these requirements cannot be met by conventional ECU circuit board materials that have glass transition temperatures of approximately 140 to 150°C. By adopting its unique resin design and compounding technologies, Panasonic has achieved a glass transition temperature of 175°C. This improves the reliability of ECU circuit boards in high-temperature environments and also meets new requirements for high heat resistance such as when these circuit boards are directly mounted on engines.
2. Excellent tracking resistance; compatible with large currents and high voltages
Increases in HEVs and EVs have raised concerns that large currents and high voltages flowing through ECU circuits may increase the risk of tracking, which lead short-circuit and cause failures. There is a growing market demand for circuit boards with high tracking resistance that eliminates short circuits even under high current and voltage conditions. The new product has achieved a CTI (Comparative Tracking Index) of 600 V or higher based on Panasonic's unique resin design and compounding technologies, giving it high insulation resistance to large currents and high voltages, and thus improving the insulation reliability of ECU circuitry.
3. Achieving excellent processability while also providing enhanced heat and tracking resistance
Improved heat and tracking resistances tend to result in hardened circuit board materials, leading to lower drill processability. The new material has achieved excellent processability while also improving high heat and tracking resistances by adopting Panasonic's unique resin compounding technologies. This will contribute to reducing processing costs by extending the service life of drill bits.
Notes:
(1) Differential scanning calorimetry (DSC) based on a circuit board test method (IPC TM650)
(2) Panasonic halogen-free multilayer circuit board material (Product No. R-1566)
About Panasonic
Panasonic Corporation is a worldwide leader in the development of diverse electronics technologies and solutions for customers in the consumer electronics, housing, automotive, enterprise solutions and device industries. Since its founding in 1918, the company has expanded globally and now operates 474 subsidiaries and 94 associated companies worldwide, recording consolidated net sales of 7.553 trillion yen for the year ended March 31, 2016. Committed to pursuing new value through innovation across divisional lines, the company uses its technologies to create a better life and a better world for its customers. To learn more about Panasonic, click here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Building Electronics Excellence in India
09/08/2025 | Nolan Johnson, SMT007 MagazineFor over two decades, Dave Bergman has helped steer the Global Electronics Association’s work in India, from a single training course to a thriving regional operation with deep government and industry ties. In this interview, Dave explains how the group went from partnering with IPCA to opening its own office in 2010, creating India’s first domestic electronics manufacturing standard, and securing funding for dozens of Indian companies to attend U.S. trade shows.
New Podcast Episode Drop: MKS’ Atotech’s Role in Optimize the Interconnect
09/08/2025 | I-Connect007In this episode of On the Line With…, host Nolan Johnson sits down with Patrick Brooks, MKS' Atotech's Global Product Director, EL Systems, to discuss the critical role that wet processes play alongside laser systems in advancing the Optimize the InterconnectSM initiative. Brooks points to Bondfilm as a key example—a specialized coating that enables CO₂ lasers to ablate more effectively than ever before.
The Global Electronics Association Hosts Successful WorksAsia-AI and Factory of the Future Technical Seminar
09/03/2025 | Global Electronics AssociationOn August 22, 2025, the Global Electronics Association hosted the successful WorksAsia-AI and Factory of the Future Technical Seminar during the exhibition Automation Taipei 2025. The seminar brought together 81 representatives from 58 companies, focusing on the latest applications of AI in smart factories and unveiling four key directions that will drive the electronics industry’s transition toward intelligence and sustainability.
TRI's AI-Powered Inspection Solutions at SMTAI 2025
09/02/2025 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems, will be joining the SMTA International Exposition & Conference. The event will be held from October 21 – 23, 2025, at the Donald E. Stephens Convention Center in Rosemont, IL, USA.
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.
Copyright © I-Connect007 | IPC Publishing Group Inc. All rights reserved.
Log in