Wearable, Low-Cost Sensor to Measure Skin Hydration
January 31, 2017 | NC State UniversityEstimated reading time: 2 minutes
Researchers from North Carolina State University have developed a wearable, wireless sensor that can monitor a person’s skin hydration for use in applications that need to detect dehydration before it poses a health problem. The device is lightweight, flexible and stretchable and has already been incorporated into prototype devices that can be worn on the wrist or as a chest patch.
The hydration sensors consist of two electrodes made of an elastic polymer composite that contains conductive silver nanowires.
“It’s difficult to measure a person’s hydration quantitatively, which is relevant for everyone from military personnel to athletes to firefighters, who are at risk of health problems related to heat stress when training or in the field,” says John Muth, a professor of electrical and computer engineering at NC State and co-corresponding author of a paper describing the work.
“We have developed technology that allows us to track an individual’s skin hydration in real time,” says Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and co-corresponding author of the paper. “Our sensor could be used to protect the health of people working in hot conditions, improve athletic performance and safety, and to track hydration in older adults or in medical patients suffering from various conditions. It can even be used to tell how effective skin moisturizers are for cosmetics.”
The new sensor, which tracks an individual’s skin hydration in real time, can be incorporated into a wearable patch. Photo credit: Shanshan Yao.
The sensor consists of two electrodes made of an elastic polymer composite that contains conductive silver nanowires. These electrodes monitor the electrical properties of the skin. Because the skin’s electric properties change in a predictable way based on an individual’s hydration, the readings from the electrodes can tell how hydrated the skin is.
In lab testing using custom-made artificial skins with a broad range of hydration levels, the researchers found that the performance of the wearable sensor was not affected by ambient humidity. And the wearable sensors were just as accurate as a large, expensive, commercially available hydration monitor that operates on similar principles, but utilizes rigid wand-like probes.
The researchers also incorporated the sensors into two different wearable systems: a wristwatch and an adhesive patch that can be worn on the chest. Both the watch and the patch wirelessly transmit sensor data to a program that can run on a laptop, tablet or smartphone. This means the data can be monitored by the user or by a designated third party – such as a doctor in a hospital setting, or an officer in a military setting.
What’s more, the sensor is relatively inexpensive.
“The commercially available monitor we tested our system against costs more than $8,000,” says Shanshan Yao, a Ph.D. student at NC State and lead author of the paper. “Our sensor costs about one dollar, and the overall manufacturing cost of the wearable systems we developed would be no more than a common wearable device, such as a Fitbit.”
The paper, “A Wearable Hydration Monitor with Conformal Nanowire Electrodes,” is published in the journal Advanced Healthcare Materials. The paper was co-authored by Amanda Myers and Abhishek Malhotra, Ph.D. students at NC State; Feiyan Lin, a former graduate student at NC State; and Alper Bozkurt, an associate professor of electrical and computer engineering at NC State.
Suggested Items
GKN Aerospace Officially Opens $55 Million Repair Facility for Aero-Engine Components in San Diego
01/02/2025 | GKN AerospaceGKN Aerospace has opened a new 150,000 square-foot facility in San Diego, California, strengthening the company’s global repair network and commitment to sustainable, cutting-edge MRO solutions.
IPC Announces New Training Course: PCB Design for Military & Aerospace Applications
12/23/2024 | IPCIPC announced the launch of a new training course: PCB Design for Military & Aerospace Applications.
Dicro Accepted as a Member of the Defence and Aerospace Industry Association PIA
12/18/2024 | Dicro OyDicro is proud to announce that the company has been accepted as a member of the Defence and Aerospace Industry Association PIA, starting from January 1, 2025. This membership reinforces Dicro's commitment to high-quality and innovative solutions in the defence and aerospace sectors.
Kickstart 2025 With Advanced PCB Design Skills
12/17/2024 | Corey Lynn, IPCAs the new year approaches, it's the perfect time to set your professional goals and enhance your expertise in the dynamic field of electronics. IPC's January and February 2025 lineup offers a variety of courses designed to meet the needs of professionals at every level of their career, from beginners to seasoned experts. Whether you're looking to delve into the intricacies of radio frequency PCB design, tackle the challenges of military and aerospace applications, or start from the basics with our introductory courses, there's something for everyone. Enroll today and take the next step toward mastering your craft in the electronics industry.
Volatus Aerospace Welcomes UK-Based Air Data Systems to its Ecosystem, Expanding Global Capabilities
12/11/2024 | ACN NewswireVolatus Aerospace Inc. is pleased to announce the integration of key assets and capabilities from Air Data Systems (ADS), based in the United Kingdom, marking a strategic expansion of its global aerial solutions ecosystem.