Device Boosts Interaction Between Light and Motion
February 22, 2017 | Agência FAPESPEstimated reading time: 3 minutes

Optomechanical devices, which simultaneously confine light waves and mechanical waves to permit interaction between them, can be used both to study fundamental questions in physics and to sense motion in a way similar to electromechanical accelerometers. In smartphones, these electronic components switch the touchscreen between portrait and landscape when they detect rotation by the user.
Novel design developed by Brazilian researchers couples light waves and mechanical waves at higher intensity levels
According to experts in the field, however, the use of optomechanical devices to study macroscopic quantum phenomena – in which the large-scale properties of matter such as mechanical vibration are subject to the laws that govern atoms (quantum mechanics) – or to identify very subtle movements requires extremely high levels of interaction, or coupling, between light waves and mechanical waves.
A group of researchers led by Thiago Pedro Mayer Alegre and Gustavo Silva Wiederhecker at the University of Campinas’s Gleb Wataghin Physics Institute (IF-UNICAMP) in São Paulo State, Brazil, have developed an optomechanical device with a novel design that boosts the coupling between light waves and mechanical waves to higher levels than those reported for similar devices developed in the laboratory. Their work was part of research projects supported by FAPESP under its Young Investigators Grants.
The new optomechanical device and an experimental demonstration of its functioning are described in an article published in the Optical Society of America’s journal Optic Express.
“The way we designed the device allows the levels of interaction between light waves and mechanical waves to be increased,” Alegre told Agência FAPESP.
“This means the device can both have practical applications and assist us in our basic research by helping us answer certain questions, such as what happens in the transition between the quantum microscopic world and the classical macroscopic world.”
The device created by the researchers, based on a 24-micron silicon disk supported by a silicon dioxide central pedestal so that the disk can vibrate, has a similar shape to a bullseye at the center of a shooting target, with concentric circular grooves.
Thanks to this shape, light waves and mechanical waves can be confined within the device by separate mechanisms.
The light waves are confined only at the edge of the disk by total internal reflection, an optical phenomenon whereby light within a medium such as water or glass is completely reflected from the surrounding surfaces (such as the air interface) back into the medium, provided the angle of incidence is greater than a certain limiting angle called the critical angle.
Light waves are therefore compressed near the disk edge and travel around the rings for a long time, whereas mechanical vibrations can propagate throughout the material.
However, the concentric rings create frequency regions in which mechanical waves cannot propagate, so that they are confined to the outside edge of the disk, where they interact directly with the light waves.
“Confining light waves and mechanical waves to the disk edge enables us to boost their interaction, which is useful for exploring quantum phenomena in macroscopic objects,” Alegre explained.
Fabrication process
In devices developed by other research groups, the concentric circular grooves are used to confine light waves in the central region and not at the edge, as in the case of the device designed by the researchers at IF-UNICAMP.
Based on the finding that, like optical vibrations, mechanical vibrations can be understood as waves, Alegre’s group had the idea of using the concentric rings to confine mechanical waves at the edge of the device and make them interact more intensely with light waves in the same region.
“The point of developing the disk with this bullseye design was to prevent the mechanical mode from ‘seeing’ the central pedestal that supports the disk and allow the entire structure to vibrate, eliminating mechanical losses,” he said.
The device is highly customizable, he added, and compatible with existing industrial fabrication processes, making it a solution for the enhancement of sensors that detect force and motion, for example.
One of its potential applications is in telecommunications as an optical modulator, Alegre explained. Because the device can sense and excite mechanical vibration, it could be used as an optical switch, turning on or off a laser beam that passes through it far more efficiently than the modulating technologies used today in optical telecommunications networks.
“It was fabricated according to current industrial processes, so any group in the world could reproduce it,” he said.
The group of researchers at IF-UNICAMP, which also includes Newton Cesário Frateschi and Felippe Alexandre Silva Barbosa, has focused on nanophotonics, a branch of optical engineering that studies the behavior of light on the nanometer scale and the interaction of nanometer-scale objects with light.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
September 2025 SMT007 Magazine: An Eye on India
09/02/2025 | I-Connect007 Editorial TeamIndia is on track to become the world’s fastest-growing major economy within the next two years, and that momentum is already reshaping its electronics manufacturing sector. Whether you work with Indian suppliers or serve Indian customers, chances are the country will become a bigger part of your supply chain in the near future.
AiM Future, Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
09/01/2025 | BUSINESS WIREAiM Future, a leading AI semiconductor design company, has signed a Memorandum of Understanding (MOU) with Franklin Wireless Corp., a global leader in intelligent wireless solutions, to jointly develop a lightweight AI model and a high-efficiency 1 TOPS performance AI SoC chipset.