Artificial Intelligence and Robots to Make Offshore Windfarms Safer and Cheaper
March 9, 2017 | University of ManchesterEstimated reading time: 2 minutes

The University of Manchester is leading a consortium to investigate advanced technologies, including robotics and artificial intelligence, for the operation and maintenance of offshore windfarms.
The remote inspection and asset management of offshore wind farms and their connection to the shore is an industry which will be worth up to £2 billion annually by 2025 in the UK alone.
Eighty to ninety percent of the cost of offshore operation and maintenance according to the Crown Estate is generated by the need to get site access – in essence get engineers and technicians to remote sites to evaluate a problem and decide what action to undertake.
Such inspection takes place in a remote and hazardous environment and requires highly trained personnel of which there is likely to be a shortage in coming years.
The £5m project will investigate the use of advanced sensing, robotics, virtual reality models and artificial intelligence to reduce maintenance cost and effort. Predictive and diagnostic techniques will allow problems to be picked up early, when easy and inexpensive maintenance will allow problems to be readily fixed. Robots and advanced sensors will be used to minimise the need for human intervention in the hazardous offshore environment.“
The UK has world-leading expertise in the technologies and science in this area, but they have often operated separately. The UK Engineering and Physical Sciences Research Council have supported this project to bring them together for the first time to make a real step change in this industry
The use of robots will allow operation in difficult or hazardous environments: sub-sea to inspect cables, in high-voltage environments to inspect high voltage equipment and around the wind turbines to check their mechanical structures. The latest in advanced sensors will be used, for example sonar techniques to assess sub-sea cable wear and degradation in situ. This, along with state-of-the-art system modelling and artificial intelligence, will be used to best assess the data produced.
The University of Manchester’s Professor Mike Barnes, who is leading the three-year project, said: “The UK has world-leading expertise in the technologies and science in this area, but they have often operated separately. The UK Engineering and Physical Sciences Research Council have supported this project to bring them together for the first time to make a real step change in this industry.”
The project is a collaboration between the universities of Manchester, Durham, Warwick, Cranfield, Heriot-Watt and a consortium of companies from the offshore industry. Techniques will be trialled in an offshore test site in Scotland and a project demonstration will be given at Salford Quays, Manchester.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
U.S. Uses Secret Trackers to Trace AI Chips Diverted to China, Sources Say
08/18/2025 | I-Connect007 Editorial TeamTwo sources told Reuters that U.S. authorities have secretly placed location trackers in some advanced chip shipments they see as at high risk of illegal diversion to China. They said the trackers are intended to locate AI chips that are sent to locations restricted by U.S. export laws, but authorities only examine some shipments.
Happy’s Tech Talk #38: Novel Metallization for UHDI
05/07/2025 | Happy Holden -- Column: Happy’s Tech TalkI have been involved in high-density electronics substrates since 1970 when I joined Hewlett-Packard’s RF semiconductor group after college. Figure 1 shows the difference between trace/space lithography for substrates and silicon starting in 1970. My projects involved sapphire circuits for RF devices, but the figure displays the state of PCBs and integrated CMOS circuits and their packaging, not discreet RF devices. Even then, semiconductors were 50X higher density.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.