Research Reveals Inner Workings of Liquid Crystals
March 24, 2017 | University of ChicagoEstimated reading time: 2 minutes

Liquid crystals are used in everything from tiny digital watches to huge television screens, from optical devices to biomedical detectors. Yet little is known of their precise molecular structure when portions of such crystals interact with air.
New research led by Juan de Pablo, the Liew Family Professor at the Institute for Molecular Engineering, uncovers previously unknown features that develop from the interface between air and certain widely studied liquid crystals.
“Liquid crystals are high-fidelity reporters of molecular events, and their effectiveness relies on controlling their molecular orientation at an interface,” de Pablo said. “The precise understanding of this interface gained from our research will enable the design of better liquid crystal sensors and displays.”
For the research published Feb. 8 in the Journal of the American Chemical Society, de Pablo worked with a team of scientists at the University of Chicago, including Binhua Lin and Benoit Roux, and at the University of Illinois at Chicago and the University of Wisconsin. They used advanced synchrotron X-rays at Argonne National Laboratory and large-scale simulations to reconstruct the molecular details.
Liquid crystals exist in a state between liquids and solids, allowing them to flow like a liquid but also have some properties of a solid. Their molecules have a rod-like structure that can be organized in various ways. Certain liquid crystals go through phase transitions in response to changes in temperature. In the nematic phase, the rod-like molecules line up in a disorderly yet parallel fashion. In the smectic phase, they also line up in parallel—but in organized layers.
“Our research revealed a number of previously unknown features,” de Pablo said. “For example, our findings indicate that the interface imprints a highly ordered, solid-like structure into the liquid crystal material. This structure then propagates well into the bulk of the liquid crystal, particularly for nematic and smectic phases.”
The research found similar characteristics between widely studied liquid crystals nematic 4-pentyl-4′-cyanobiphenyl and smectic 4-octyl- 4′-cyanobiphenyl. Both align perpendicularly at the air-liquid crystals interface and exhibit well-defined, surface-induced layers at the interface. When both were heated to a fully liquid phase, only a single layer of structured molecules was formed at the interface between the liquid and the air.
The researchers plan to study the interfaces of liquid crystals and aqueous electrolytes to understand the effects of electrostatic interactions and the liquid crystal orientational ordering.
“These results will be particularly important in guiding the design of responsive liquid crystal interfaces for sensing chemicals and biological molecules,” the paper concluded.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.