Stretching Beyond Flex
March 30, 2017 | Andy Behr, Panasonic Electronic MaterialsEstimated reading time: 1 minute

Emerging end-use electronic applications are driving dramatic innovations in circuit board and interconnection technology. New form factors, functionality and durability requirements are challenging the status quo for the PCB industry and pushing design, material and process development to the limit. Incipient devices like wearables, epidermal monitors, embedded sensors, smart labels, human machine interfaces (HMIs), conformable antennas, flexible displays and in-mold electronics (IME) require a combination of circuit stretchability and toughness that isn’t achievable with conventional circuit manufacturing technologies.
Device manufacturers are seeking alternative methods for creating wiring patterns and interconnecting components that are more conformable, elastic and durable than currently available. To set the stage for a discussion on stretchable circuit technology, this article describes two classes of polymers commonly used for manufacturing circuit boards and outlines the developmental arc of two fundamental PCB materials, conductive circuits and organic substrates. The article concludes by reviewing stateof-the art, commercially available stretchable substrate and conductor technologies, as well as new materials and processes that are being researched.
Thermoplastic and Thermosetting Polymers
Broadly speaking, the polymers used for manufacturing electronics may be divided into two classes: thermoplastic and thermoset. The division is based on the degree of chemical cross-linking between the constituent molecules and the temperature-related mechanical properties this cross-linking (or lack thereof) imparts. Depending on the resin system, both classes of polymers can exhibit a wide variety of properties. For example, both thermoplastic and thermoset resins can run the gamut of hardness physiognomies from rigid and brittle to flexible and bendable to elastomeric and stretchable.
Thermoplastic polymers typically have a low degree of intermolecular cross-linking. The long chain polymer molecules are tightly “tangled” at temperatures below the glass transition (Tg), resulting in a solid or “glassy” material.
To read the full version of this article which appeared in the March 2017 issue of The PCB Magazine, click here.
Suggested Items
Hon Hai Education Foundation Continues to Promote Quantum Education
07/04/2025 | FoxconnHon Hai Education Foundation has long been committed to promoting forward-looking technology education in Taiwan's high schools, and held the "High School Quantum Teacher Training Camp" in Tainan City on July 1.
Incap UK Achieves JOSCAR Zero Accreditation
07/04/2025 | IncapIncap Electronics UK has been accredited under JOSCAR Zero, a new sustainability-focused extension of the defence and aerospace sector’s supplier assurance system.
Kitron Secures Contract for Components Supporting Unmanned Aerial Systems
07/04/2025 | KitronKitron has received a contract with an estimated value between EUR 4 and 8 million for the production and supply of advanced electronic components used in unmanned aerial systems (UAS).
NOTE Receives Order Worth 132 MSEK and Expands Collaboration with Customer within Security & Defense
07/04/2025 | NOTENOTE has received an order worth SEK 132 million from one of its existing customers operating within Security & Defense. NOTE thereby strengthens its long-term collaboration with the industry-leading customer.
Delta SEA Partner Event 2025 Unites Regional Partners to Embrace a “Future Ready” Vision
07/03/2025 | Delta ElectronicsDelta Electronics (Thailand) Public Company Limited, successfully hosted its Delta SEA Partner Event 2025: Future Ready at Delta Chungli Plant 5, Taiwan on June 10 – 11 , 2025.