New Battery Coating Could Improve Smart Phones and Electric Vehicles
April 18, 2017 | University of California, RiversideEstimated reading time: 2 minutes

High performing lithium-ion batteries are a key component of laptops, smart phones, and electric vehicles. Currently, the anodes, or negative charged side of lithium ion batteries, are generally made with graphite or other carbon-based materials.
But, the performance of carbon based materials is limited because of the weight and energy density, which is the amount of energy that can be stored in a given space. As a result, a lot of research is focused on lithium-metal anodes.
The success of lithium metal anodes will enable many battery technologies, including lithium metal and lithium air, which can potentially increase the capacity of today’s best lithium-ion batteries five to 10 times. That would mean five to 10 times more range for electric vehicles and smartphone batteries lasting five to 10 times more time. Lithium metal anodes are also lighter and less expensive.
The problem with lithium ion batteries made with metal is that during charge cycles they uncontrollably grow dendrites, which are microscopic fibers that look like tree sprouts. The dendrites degrade the performance of the battery and also present a safety issue because they can short circuit the battery and in some cases catch fire.
A team of researchers at the University of California, Riverside has made a significant advancement in solving the more than 40-year-old dendrite problem. Their findings were just published in the journal Chemistry of Materials.
The team discovered that by coating the battery with an organic compound called methyl viologen they are able to stabilize battery performance, eliminate dendrite growth and increase the lifetime of the battery by more than three times compared to the current standard electrolyte used with lithium metal anodes.
“This has the potential to change the future,” said Chao Wang, an adjunct assistant professor of chemistry at UC Riverside who is the lead author of the paper. “It is low cost, easily manipulated and compatible with the current lithium ion battery industry.”
The researchers designed a new strategy to form a stable coating to enhance the lifetime of lithium-metal anodes. They used methyl viologen, which has been used in other applications because of its ability to change color when reduced.
The methyl viologen molecule used by the researchers can be dissolved in the electrolytes in the charged states. Once the molecules meet the lithium metal, they are immediately reduced to form a stable coating on top of the metal electrode.
By adding only .5 percent of viologen into the electrolyte, the cycling lifetime can already be enhanced by three times. In addition, methyl viologen is very low in cost and can easily be scaled up.
The stable operation of lithium metal anodes, which the researchers have achieved with the addition of methyl viologen, could enable the development of next generation high-capacity batteries, including lithium metal batteries and lithium air batteries.
Wang cautioned that while the coating improves battery performance, it isn’t a way to prevent batteries from catching fire.
Suggested Items
Indium to Showcase Innovative Materials Powering AI Technology at Productronica China
03/25/2025 | Indium CorporationAs a proven leader in Metal-Based Thermal Interface materials solutions for future-forward technologies, Indium Corporation will proudly showcase its portfolio of thermal interface materials (TIMs) that enabling AI advancements at Productronica China, March 26-28, in Shanghai, China.
Electroninks' MOD and iSAP Game Changers
03/25/2025 | Marcy LaRont, PCB007 MagazineElectroninks, a prominent player in particle-free conductive inks, recently announced an exciting new range of metal-complex inks for ultra high density interconnect (UHDI) technology. At the SMTA UHDI Symposium in January, Mike Vinson, COO of Electroninks, gave a presentation on this line of MOD inks, which are versatile and suitable for a range of applications that require ultra-dense, miniaturized, and high-frequency technology. Mike says his technology is a game changer and will revolutionize UHDI circuit fabrication.
Curtiss-Wright Wins Rheinmetall Contracts for Vehicle Stabilization Systems
03/25/2025 | Curtiss-Wright CorporationCurtiss-Wright Corporation announced that it has been awarded multiple contracts to provide its turret drive aiming and stabilization technology to Rheinmetall for use on the German Army's Boxer Heavy Weapon Carrier and the Hungarian Ministry of Defence (MoD’s) Lynx infantry fighting vehicles (IFV).
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Rheinmetall Begins MASS Assembly in Australia to Support Royal Australian Navy
03/10/2025 | RheinmetallRheinmetall Defence Australia has begun assembling the first Multi Ammunition Soft Kill System (MASS) ship protection systems in Australia for installation on Royal Australian Navy ships.