‘Data-Driven’ Design Could Lead to Improved Lithium-Ion Batteries
April 25, 2017 | Purdue UniversityEstimated reading time: 2 minutes

Purdue University is working with MIT and Stanford University in a project funded by the Toyota Research Institute to improve rechargeable lithium-ion batteries and accelerate their integration into electric and hybrid vehicles.
Purdue’s part of the four-year effort is to better understand the fundamental science governing how a battery’s internal architecture impacts energy storage, recharging speed and reliability, said Edwin García, a Purdue professor of materials engineering.
Advanced multi-scale modeling and simulations will be used to guide experiments aimed at improving the design of electrodes called cathodes and anodes, which contain particles made of emerging materials such as lithium iron phosphate or lithium cobalt oxide.
While the Purdue researchers will focus on theory, they will collaborate with their Stanford and MIT counterparts to guide the design of experiments based on insights from modeling. Data from the experiments will then, in turn, be used for input and validation to refine modeling, with the ultimate goal of solving key limitations in today’s rechargeable batteries.
“This work is data-driven, and we want to learn how the nano-scale structure affects a material’s macro-scale behavior and overall battery performance,” García said. “We will use data to come up with better models and to better understand the basic science of materials at the atomic scale.”
The porous electrodes must contain just the right density and design of particles for optimal performance and diffusion of lithium ions, which are contained in an electrolyte liquid or gel.
“Using the analogy of chocolate chip cookies, the chips are the battery particles, which contain the energy, and the dough represents the space between particles,” he said. “You can’t have too few or too many chips, so there is a sweet spot there that you are aiming for.”
The three universities are sharing $10 million as part of a $35 million initiative by Toyota. The project began in early April.
“It’s very unusual for a project funded by industry to span four years and support theoretical research, so you have to give Toyota credit for its dedication to solving this problem,” García said. “This is an opportunity to develop the necessary fundamental scientific foundation to correlate materials’ chemistry, properties and performance and unravel the complexity in existing and emerging battery materials.”
Researchers will observe the changing microscopic details of the particles as a battery charges and discharges.
The project will involve two Purdue graduate students.
“They will be directly involved with experimentalists at Stanford and MIT, actually influencing the design of the experiments, and for modeling students that’s very unusual,” García said. “That’s a huge gain intellectually for the students.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Accelerating Embedded Innovation: Orthogone Becomes Texas Instruments Design Partner
09/17/2025 | PRNewswireOrthogone Technologies Inc., a leader in advanced embedded systems and FPGA development, is proud to announce its official designation as a Texas Instruments (TI) Design Services Partner.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
American Standard Circuits to Exhibit and Host Lunch & Learn at PCB West 2025
09/17/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Circuits/ASC Sunstone Circuits has announced that his company will once again be exhibiting at PCB West 2025 to be held at the Santa Clara Convention Center on Wednesday, October 1, 2025.
ASM Technologies Limited signs MoU with the Guidance, Government of Tamilnadu to Expand Design-Led Manufacturing capabilities for ESDM
09/15/2025 | ASM TechnologiesASM Technologies Limited, a pioneer in Design- Led Manufacturing in the semiconductor and automotive industries, announced signing of Memorandum of Understanding (MoU) with the Guidance, Government of Tamilnadu whereby it will invest Rs. 250 crores in the state to expand its ESDM related Design-Led Manufacturing and precision engineering capacity. ASM Technologies will acquire 5 acres of land from the Government of Tamilnadu to set up a state-of-the-art design facility in Tamil Nadu's growing technology manufacturing ecosystem, providing a strong strategic advantage and long-term benefits for ASM.