‘Data-Driven’ Design Could Lead to Improved Lithium-Ion Batteries
April 25, 2017 | Purdue UniversityEstimated reading time: 2 minutes

Purdue University is working with MIT and Stanford University in a project funded by the Toyota Research Institute to improve rechargeable lithium-ion batteries and accelerate their integration into electric and hybrid vehicles.
Purdue’s part of the four-year effort is to better understand the fundamental science governing how a battery’s internal architecture impacts energy storage, recharging speed and reliability, said Edwin García, a Purdue professor of materials engineering.
Advanced multi-scale modeling and simulations will be used to guide experiments aimed at improving the design of electrodes called cathodes and anodes, which contain particles made of emerging materials such as lithium iron phosphate or lithium cobalt oxide.
While the Purdue researchers will focus on theory, they will collaborate with their Stanford and MIT counterparts to guide the design of experiments based on insights from modeling. Data from the experiments will then, in turn, be used for input and validation to refine modeling, with the ultimate goal of solving key limitations in today’s rechargeable batteries.
“This work is data-driven, and we want to learn how the nano-scale structure affects a material’s macro-scale behavior and overall battery performance,” García said. “We will use data to come up with better models and to better understand the basic science of materials at the atomic scale.”
The porous electrodes must contain just the right density and design of particles for optimal performance and diffusion of lithium ions, which are contained in an electrolyte liquid or gel.
“Using the analogy of chocolate chip cookies, the chips are the battery particles, which contain the energy, and the dough represents the space between particles,” he said. “You can’t have too few or too many chips, so there is a sweet spot there that you are aiming for.”
The three universities are sharing $10 million as part of a $35 million initiative by Toyota. The project began in early April.
“It’s very unusual for a project funded by industry to span four years and support theoretical research, so you have to give Toyota credit for its dedication to solving this problem,” García said. “This is an opportunity to develop the necessary fundamental scientific foundation to correlate materials’ chemistry, properties and performance and unravel the complexity in existing and emerging battery materials.”
Researchers will observe the changing microscopic details of the particles as a battery charges and discharges.
The project will involve two Purdue graduate students.
“They will be directly involved with experimentalists at Stanford and MIT, actually influencing the design of the experiments, and for modeling students that’s very unusual,” García said. “That’s a huge gain intellectually for the students.”
Suggested Items
HyRel Technologies Celebrates Future Innovators: Intern Program Empowers the Next Generation of Engineers and Professionals
05/01/2025 | HyRelHyRel Technologies, a global provider of quick turn semiconductor modification solutions, is proud to spotlight its 7th class of interns in partnership with Peoria Unified School District, featuring three outstanding young women who are already making meaningful contributions to the company's innovative engineering and operations efforts.
SEMI 3D & Systems Summit to Spotlight Trends in Hybrid Bonding, Chiplet Architecture and Geopolitical Dynamics
05/01/2025 | SEMILeading experts in 3D integration and systems for semiconductor manufacturing applications will gather at the annual SEMI 3D & Systems Summit, June 25-27, 2025, in Dresden.
Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
05/01/2025 | Cadence Design SystemsCadence announced a significant expansion of its portfolio of design IP optimized for Intel 18A and Intel 18A-P technologies and certification of Cadence® digital and analog/custom design solutions for the latest Intel 18A process design kit (PDK).
A Visit With ‘Flexperts’ Mark Finstad and Nick Koop
05/01/2025 | Joe Fjelstad, Verdant ElectronicsAt IPC APEX EXPO 2025, I chatted with seasoned flex experts Mark Finstad and Nick Koop about "Flexperts" and their roles as leading educators and in the realm of standards development for this increasingly indispensable electronic interconnection technology. They have been teaching about lessons learned and how to successfully navigate the “seas” of flexible circuits to help their students avoid the hazards that have taken down many of their predecessors in the past.
Siemens Expands Global Electronics Intelligence Reach and Supplyframe Portfolio with Wevolver Acquisition
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced its intention to acquire Wevolver, expanding its audience reach, enhancing the Supplyframe product portfolio, and combining digital marketing and integrated campaign programs that include go-to-market support and content creation.