Using Sulfur to Store Solar Energy
May 4, 2017 | KITEstimated reading time: 3 minutes

Researchers of Karlsruhe Institute of Technology (KIT) and their European partners plan to develop an innovative sulfur-based storage system for solar power. Large-scale chemical storage of solar power and its overnight use as a fuel are to be achieved by means of a closed sulfur-sulfuric acid cycle. In the long term, this might be the basis of an economically efficient renewable energy source capable of providing base-load power. The pre-development work under the PEGASUS project will be funded by the EU with about EUR 4.7 million.
“Solar power plants effectively capture process heat and sulfur might be a suitable storage material to use this power for base-load electricity production,” Professor Dimosthenis Trimis of KIT’s Engler-Bunte Institute says. Sulfur and sulfuric acid are used in many industrial applications. Numerous chemical processes have already been established for e.g. vulcanization, sulfuric acid production, or flue gas desulfurization. “To use the combustion of sulfur as a sustainable energy source on an industrial scale, we already have a large kit of process technologies.”
The long-term goal of PEGASUS is the development and demonstration of an innovative solar power tower facility. A solar absorber is combined with a thermochemical solar power storage system based on elementary sulfur and sulfuric acid. Compared to current concepts, this promises to reduce costs significantly. The technology will be tested under real conditions at the Jülich Solar Power Tower Facility (STJ) in Germany. PEGASUS is coordinated by the Institute of Solar Research of the German Aerospace Center DLR.
The partial project executed by KIT focuses on the technical implementation of combustion. It is planned to develop a lab-scale sulfur burner for stable combustion in the range from 10 to 50 kilowatts at high power densities under atmospheric conditions and temperatures higher than 1400°C. Power density in particular allows for the effective use of sulfur as a fuel for electricity production. “Although combustion often is associated with fossil technologies, we want to show that it also is an important element in the context of the energy transition,” Trimis says.
Elementary sulfur is produced by the disproportionation of sulfur dioxide, i.e. conversion of sulfur dioxide into sulfur and sulfuric acid. The focused sunlight of the solar power plant supplies the process heat with the energy and temperature required to close the sulfur cycle and to convert sulfuric acid back into sulfur dioxide in the presence of suited catalysts. Sulfur dioxide also is the combustion product of sulfur.
In cooperation with the project partners, feasibility of the overall process shall be demonstrated. A detailed flowsheet is planned to be drafted and the optimized integrated process scaled to the 5 MW thermal power level shall be analyzed. It is planned to develop prototypes of the key components, such as the solar absorber, sulfuric acid evaporator, sulfur trioxide decomposer, and sulfur burner and to test them at the solar power tower facility. In addition, the materials required for heat absorption, transfer, and storage and for the catalysts of the chemical reactions are planned to be tested for efficiency and long-term stability. The concept envisaged for solar power tower facilities is characterized by the use of an inexpensive heat storage medium. Use of the stored energy in a burner makes these power plants capable of providing base-load power. In the long term, system costs will be lower than estimated for photovoltaic systems.
Partners of the PEGASUS project are the Karlsruhe Institute of Technology, the German Aerospace Center (DLR) and the Center for Research and Technology CERTH (Greece). The industry partners are Brightsource Industries from Israel, Processi Innovativi, Italy, and Baltic Ceramics, Poland. The project is funded under the EU Horizon 2020 Framework Programme with EUR 4.695 million.
About KIT
Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.