Energy Decay in Graphene Resonators
May 17, 2017 | ICFOEstimated reading time: 2 minutes

An ICFO study in Nature Nanotechnology reveals a new way of energy dissipation in graphene nano-resonators. Energy dissipation is a key ingredient in understanding many physical phenomena in thermodynamics, photonics, chemical reactions, nuclear fission, photon emissions, or even electronic circuits, among others.
In a vibrating system, the energy dissipation is quantified by the quality factor. If the quality factor of the resonator is high, the mechanical energy will dissipate at a very low rate, and therefore the resonator will be extremely accurate at measuring or sensing objects thus enabling these systems to become very sensitive mass and force sensors, as well as exciting quantum systems. Take, for example, a guitar string and make it vibrate. The vibration created in the string resonates in the body of the guitar. Because the vibrations of the body are strongly coupled to the surrounding air, the energy of the string vibration will dissipate more efficiently into the environment bath, increasing the volume of the sound. The decay is well known to be linear, as it does not depend on the vibrational amplitude.
Now, take the guitar string and shrink it down to nano-meter dimensions to obtain a nano-mechanical resonator. In these nano systems, energy dissipation has been observed to depend on the amplitude of the vibration, described as a non-linear phenomenon, and so far no proposed theory has been proven to correctly describe this dissipation process.
In a recent study, published in Nature Nanotechnology, ICFO researchers Johannes Güttinger, Adrien Noury, Peter Weber, Camille Lagoin, Joel Moser, led by Prof. at ICFO Adrian Bachtold, in collaboration with researchers from Chalmers University of Technology and ETH Zurich, have found an explanation of the non-linear dissipation process using a nano-mechanical resonator based on multilayer graphene.
In their work, the team of researchers used a graphene based nano-mechanical resonator, well suited for observing nonlinear effects in energy decay processes, and measured it with a superconducting microwave cavity. Such a system is capable of detecting the mechanical vibrations in a very short period of time as well as being sensitive enough to detect minimum displacements and over a very broad range of vibrational amplitudes.
The team took the system, forced it out-of-equilibrium using a driving force, and subsequently switched the force off to measure the vibrational amplitude as the energy of the system decayed. They carried out over 1000 measurements for every energy decay trace and were able to observe that as the energy of a vibrational mode decays, the rate of decay reaches a point where it changes abruptly to a lower value. The larger energy decay at high amplitude vibrations can be explained by a model where the measured vibration mode “hybridizes” with another mode of the system and they decay in unison. This is equivalent to the coupling of the guitar string to the body although the coupling is nonlinear in the case of the graphene nano resonator. As the vibrational amplitude decreases, the rate suddenly changes and the modes become decoupled, resulting in comparatively low decay rates, thus in very giant quality factors exceeding 1 million. This abrupt change in the decay has never been predicted or measured until now.
Therefore, the results achieved in this study have shown that nonlinear effects in graphene nano-mechanical resonators reveal a hybridization effect at high energies that, if controlled, could open up new possibilities to manipulate vibrational states, engineer hybrid states with mechanical modes at completely different frequencies, and to study the collective motion of highly tunable systems.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Variosystems Strengthens North American Presence with Southlake Relaunch 2025
09/15/2025 | VariosystemsVariosystems celebrated the relaunch of its U.S. facility in Southlake, Texas. After months of redesign and reorganization, the opening marked more than just the return to a modernized production site—it was a moment to reconnect with our teams, partners, and the local community.
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.