NREL’s Quantum Dot Research Yields Greater Control
May 18, 2017 | NRELEstimated reading time: 2 minutes

Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have developed new designer quantum dot systems with greater control over beneficial properties for photoelectrochemical and photovoltaic solar applications.
NREL researcher Dan Kroupa, working in a glove box, is performing ligand exchanges on PbS quantum dot samples. He is a co-author of the paper "Tuning Colloidal Quantum Dot Band Edge Positions through Solution-Phase Surface Chemistry Modification.” Photo by Dennis Schroeder, NREL
The scientists were able to chemically modify lead sulfide (PbS) quantum dot surfaces so that their ionization energy-- the amount of energy needed to remove a single electron from the solid--could be varied systematically from 6.5 eV to 4.1 eV (greater than a 2 eV change).
"What we showed here with quantum dots is they can be very flexible chemical systems. You can tune their ionization energy over a very large range of values in a very systematic way," said Matthew Beard, a senior scientist within NREL's Chemical and Biosciences Center and lead author of a new paper in Nature Communications, Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification.
Beard's NREL co-authors are Daniel Kroupa, Elisa Miller, Jing Gu, and Arthur Nozik. They were joined by University of Chicago researchers Marton Voros and Giulia Galli and Brett McNichols and Alan Sellinger from the Colorado School of Mines.
Quantum dots (QDs) are considered to be pseudo-atoms that have highly tunable opto-electronic properties. Researchers are studying films of QDs as functional solids in a variety of applications, including solar cells and solar photoelectrochemical cells. The ionization energy of a typical solid is determined from the constituent atoms and, in general, cannot be modified. In QD solids, however, the ionization energy, as well as other beneficial opto-electronic properties, can be modified in controlled and rational ways. Their work presents clear design rules for tuning the ionization energy over a large range of values.
NREL's research also established the fundamental principles that govern the relationship between a quantum dot and ligand, which are organic molecules attached to the surfaces of a QD. Prior studies have shown that modifying the interface between a PbS QD and a ligand produces different chemical systems, but a clear and quantitative relationship hasn't been reported until now.
NREL researchers worked with seven specific ligands, chosen from a field of more than 500 possibilities. Knowing the specific design rules allows for rational design of functional semiconductor systems. "You can really dial in the properties you want," Beard said.
The research was funded by the Office of Science within the U.S. Department of Energy.
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Accelerating Embedded Innovation: Orthogone Becomes Texas Instruments Design Partner
09/17/2025 | PRNewswireOrthogone Technologies Inc., a leader in advanced embedded systems and FPGA development, is proud to announce its official designation as a Texas Instruments (TI) Design Services Partner.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
American Standard Circuits to Exhibit and Host Lunch & Learn at PCB West 2025
09/17/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Circuits/ASC Sunstone Circuits has announced that his company will once again be exhibiting at PCB West 2025 to be held at the Santa Clara Convention Center on Wednesday, October 1, 2025.
ASM Technologies Limited signs MoU with the Guidance, Government of Tamilnadu to Expand Design-Led Manufacturing capabilities for ESDM
09/15/2025 | ASM TechnologiesASM Technologies Limited, a pioneer in Design- Led Manufacturing in the semiconductor and automotive industries, announced signing of Memorandum of Understanding (MoU) with the Guidance, Government of Tamilnadu whereby it will invest Rs. 250 crores in the state to expand its ESDM related Design-Led Manufacturing and precision engineering capacity. ASM Technologies will acquire 5 acres of land from the Government of Tamilnadu to set up a state-of-the-art design facility in Tamil Nadu's growing technology manufacturing ecosystem, providing a strong strategic advantage and long-term benefits for ASM.