Glass Microchip for Ultrafast Separation and Purification of DNA Fragments
May 30, 2017 | University of TwenteEstimated reading time: 2 minutes
Researchers of the University of Twente developed a glass microchip for ultrafast separation and purification of DNA fragments. The chip, moreover, is easy to produce and cheap.
The new chip is capable of fractionating DNA fragments within just a few minutes, while conventional approaches take hours. The chip does this in high resolution and also purifies the fragments; it removes the other salts in the DNA sample. Tiny amounts of DNA, like in medical diagnostics or in forensics, will be sufficient. The fragments are typically in the size range of second generation DNA sequencing, the next step after the well-known Human Genome Project.
Moving Snake
UT scientist Burcu Gumuscu and her colleagues achieved this high speed and resolution by inventing a new approach to the common technique of gel electrophoresis. In the conventional approach, the DNA moves in a gel by an applied electric field. Larger fragments will move slower than small ones, and in this way size separation is possible. But the electric field has one direction and the molecules move in a straight line. What about varying the field, the UT scientists thought. If you periodically apply an electric field of different magnitude in the perpendicular direction, the fragments will also respond to this. They don’t just move in a straight line now, but somewhere in between the two field directions. As large fragments respond differently - like a snake moves - to the fields than small ones, fragments can be separated.
By applying electric fields in two directions, larger and smaller fragments move in a different way and exit at different micro channels.
Cheap
For collecting the fragments, the chip has arrays of micro channels on the sides of a square separation chamber of about 1 square centimeter. Next to that, it has a DNA reservoir and electrodes for applying the electric fields. The chip is relatively easy to produce using fundamental cleanroom techniques of the MESA+ NanoLab, and cheap. It is versatile as well, as the type and concentration of gel and the electric fields can be adjusted to the application. Protein separation is one of the other possible application areas.
The research shows that DNA fragments between 0,5 kbp and 10 kpb (1 kbp= 1000 base pairs) can be fractionated within two minutes, at high resolution. These are typically the smaller fragments, essential for the second generation DNA sequencing. Speeding up the separation is also a major step forward in medical applications.
The research has been done in the BIOS Lab-on-a-chip group, part of the MESA+ and MIRA research institutes of the University of Twente.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Meet Thiago Guimaraes, IPC's New Director of Industry Intelligence
05/05/2025 | Chris Mitchell, IPC VP, Global Government RelationsThe fast pace of innovation in the electronics manufacturing industry means business owners must continuously adapt their processes and capabilities to meet changing customer demands and market trends. To that end, IPC has hired Thiago Guimaraes as the new director of Industry Intelligence. In this interview, Thiago shares key goals and objectives that could revolutionize the industry as he helps stakeholders navigate industry trends and challenges.
Honeywell Advances Technology for the European Defense Sector
04/29/2025 | HoneywellHoneywell has received two research grants to execute projects aimed at advancing avionics and cybersecurity capabilities for the European defense sector.