Photonic 'Hypercrystals' Shed Stronger Light
May 31, 2017 | Purdue UniversityEstimated reading time: 3 minutes
Sources that integrate two artificial optical material concepts may drive ultrafast “Li-Fi” communications.
In many applications, Li-Fi through-the-air optical networks potentially offer major advantages over Wi-Fi and other radiofrequency systems. Li-Fi nets can operate at extremely high speeds. They can exploit an extremely broad spectrum of frequencies. They avoid the interference problems that plague radiofrequency systems, which are especially problematic in high-security environments such as airplane cockpits and nuclear power stations. They are less open to hackers. And while their range is relatively limited, they don’t need line-of-sight connections to operate, said Evgenii Narimanov, a Purdue University professor of electrical and computer engineering.
This drawing depicts a “photonic hypercrystal,” which is promising for future “Li-Fi” technologies that offer major advantages over Wi-Fi and other radiofrequency communications systems. (Image courtesy of Tal Galfsky, CCNY)
Today’s Li-Fi nets can’t fully achieve all these potential benefits because they lack suitable light sources, he said.
But designs that integrate two optical material concepts into “photonic hypercrystals” may fill this gap.
Narimanov first proposed this concept in 2014. This month, he and colleagues at the City College of New York reported demonstrations of photonic hypercrystals with greatly increased light emission rates and intensities in the Proceedings of the National Academy of Sciences (PNAS).
Photonic hypercrystals combine the properties of metamaterials and photonic crystals, both “artificial” optical materials with properties that are not usually found in nature, Narimanov said.
Metamaterials are created from artificial building blocks that are much smaller than the wavelength of light, while in photonic crystals the size of the “unit cell” is comparable to this wavelength. While these two types of composite materials generally show very different properties, the photonic hypercrystals combine them all within the same structure.
Photonic hypercrystals are based on one type called hyperbolic metamaterials, which can be built with alternating layers of metal and dielectric materials—where the electrical current can only travel along the metallic layers.
“Generally, for light, metals and dielectrics are fundamentally different: light can travel in dielectrics, but is reflected back from metals,” Narimanov said. "But a hyperbolic metamaterial behaves as metal along the layers and as a dielectric in the direction perpendicular to the layers, at the same time. For light, hyperbolic media is, therefore, the third estate of matter, entirely different from the usual metals and dielectrics.”
Among the interesting properties that this structure produces, the metamaterial accommodates a large number of photonic states, allowing spontaneous light emission at extremely high rates.
“For a light source, the problem is that this light in the hyperbolic metamaterial can’t get out,” said Narimanov.
Enter photonic crystals—periodic nanostructures that can manipulate optical interference to optimize light transmission.
In the integrated photonic hypercrystals presented in the PNAS paper, the hyperbolic metamaterial consists of alternating layers of silver (the metal) and aluminum oxide (the dielectric). Hexagonal arrays of holes milled into the layers create the photonic crystal. In the design, the visible light is emitted by quantum dots (semiconductor nanoparticles that can emit light) embedded in one of the layers that form the hyperbolic metamaterial.
The result: extremely high levels of control and enhancement of the emitted light.
“These photonic hypercrystals were fabricated at the City University of New York’s Advanced Science Research Center using standard nano- and micro-fabrication techniques such as thin film evaporation and focused ion beam milling,” said Tal Galfsky, a CCNY graduate student who is lead author on the PNAS paper. “These techniques are scalable with modern industry capabilities. "
Vinod Menon, CCNY professor of physics, is senior author on the paper, and CCNY graduate student Jie Gu also contributed to the work.
The work reported in PNAS demonstrates that “on a fundamental level, the problem of designing photonic hypercrystals has been solved,” said Narimanov.
He cautions, however, that significant engineering challenges must be overcome before these devices can be commercialized. Among these barriers, the demonstration devices are pumped optically by a laser, but commercial versions will need to be driven electrically and incorporate either semiconductor or organic LEDs, he said.
As they mature, photonic hypercrystals also may fill many other demanding roles in ultrafast optoelectronics. One of the most promising avenues of research, Narimanov suggested, is to create more efficient versions of the single-photon guns employed in quantum information processing.
The research was supported by the Army Research Office, the National Science Foundation and the Gordon and Betty Moore Foundation.
Writer: Eric Bender
Source: Evgenii Narimanov, 765-494-1622, evgenii@purdue.edu
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
The Road to Reliability: Why EV Electronics Matter More Than Ever
09/16/2025 | Stanton Rak, SF Rak CompanyThe global transition to e-Mobility is redefining the design and reliability expectations of automotive electronics. Unlike their internal combustion engine (ICE) counterparts, EVs operate under "always-on" conditions and are subject to higher voltages, higher currents, and elevated thermal loads. These systems also incorporate exponentially more sensors, control units, and advanced power electronics, often tightly packed in thermally constrained spaces.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.