Artificial Intelligence Imaging Research Makes Diagnosing Disease Easier
June 7, 2017 | University of WaterlooEstimated reading time: 1 minute

A recent advancement in microscope imaging technology at the University of Waterloo could soon make diagnosing disease more accessible and affordable.
The advancement, developed by Waterloo researchers Farnoud Kazemzadeh and Alexander Wong, has led to a new form of spectral light-fusion microscope for capturing lightfield images in full-colour. Full-colour images are required in pathology as it enables the microscope user to analyze the behaviour and interactions of different organisms at a scale that much larger than traditional microscopes.
Pathology is a medical specialty that focuses on the diagnosis of disease based on laboratory analysis of bodily fluids and tissues.
The several-hundred-dollar microscope has no lens, and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale. It’s a process that currently requires a technician to “stitch” together multiple images from traditional microscope images to get the same effect, and requires a machine that costs several hundred thousand dollars.
Alex Wong (right) and Farnoud Kazemzadeh use artificial intelligence to examine medical images.
“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it,” said Wong, an associate professor of Engineering at Waterloo and Canada Research Chair in Medical Imaging. “This technology has the potential to make pathology labs more affordable for communities who currently don’t have access to conventional equipment.”
The current spectral light-fusion microscope represents the second-generation of technology that he patented last year with Kazemzadeh.
The microscope captures light fields and allows for 3D images that are approximately 100-times larger than the 2D images captured by more traditional microscopes.
“Currently, the technology required to operate a pathology lab is quite expensive and is largely restricted to places such as Europe and North America, which can afford them,” said Kazemzadeh, an adjunct professor of Systems Design Engineering at Waterloo. “It would be interesting to see what a more affordable, mobile pathology lab could achieve.”
Details of the first-generation microscope invented by Kazemzadeh and Wong were published last year in Nature Scientific Reports.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.