Robotic Devices as Therapeutic and Diagnostic Tools for Stroke Patients
June 7, 2017 | UNISTEstimated reading time: 1 minute

A recent study, affiliated with UNIST has introduced a new robotic technology for stroke rehabilitation. Their robotic-assisted rehabilitation therapy, combined with standard rehabilitation, is expected to improve the mobility of patients surviving a stroke.
This breakthrough research has been led by Professor Sang Hoon Kang of Mechanical, Aerospace and Nuclear Engineering at UNIST in collaboration with Professor Pyung-Hun Chang of DGIST and Dr. Kyungbin Park of Samsung Electronics Co. Ltd.
In their study, published in the May issue of the prestigious journal, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Professor Kang and his team developed a rehabilitation robotic system that quantitatively measures the 3 degree-of-freedom (DOF) impedance of human forearm and wrist in minutes.
Using their impedance estimation device, entitled the distal internal model based impedance control (dIMBIC)-based method, the team was able to accurately characterize the 3 DOF forearm and wrist impedance, including inertia, damping, and stiffness, for the first time.
Each year, an estimated 150,000 people suffer from a stroke. A common physical response to brain injury, caused by stroke is spasticity. It is a muscle control disorder that is characterized by tight or stiff muscles and an inability to control those muscles. Spasticity is often manifested by increased stretch reflex activity and mechanical joint resistance.
“The dIMBIC-based method can be used to assist in the quantitative and objective evaluation of neurological disorders, like stroke,” says Professor Kang. “Findings from this study will open a new chapter in robot-assisted rehabilitation in the workplace accident rehabilitation hospitals.”
Experimental setup for the estimation of the 3 DOF human forearm and wrist impedance.
The research team expects that, in the long run, the proposed 3 DOF impedance estimation may promote wrist and forearm motor control studies and complement the diagnosis of the alteration in wrist and forearm resistance post-stroke by providing objective impedance values including cross-coupled terms.
The study has been supported by the Translational Research Center for Rehabilitation Robots, the National Rehabilitation Center, and the Korean Ministry of Health and Welfare. It has been selected as a featured article by IEEE.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Nortech Systems Achieves Enhanced Fiber Optic Performance
09/16/2025 | Nortech SystemsNortech Systems Incorporated, a leading provider of design and manufacturing solutions for complex electromedical devices and electromechanical systems, announced significant advancements in its fiber optic capabilities.
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.