Innovative Organic Foils for Remote Analysis of Chemical Compositions
June 8, 2017 | Technische Universität DresdenEstimated reading time: 2 minutes

Scientists at the Dresden Integrated Center for Applied Physics and Photonic Materials (Direction Prof. Leo) at TU Dresden have developed ultra-thin, flexible, and cheap organic foils to access the chemical composition of samples in a remote, fast, and sustainable manner. To build those low-noise detectors for infrared radiation, the research team, headed by Prof. Vandewal, applied for the first time the absorption at the interface between organic semiconductors. The scientists see need for such sensors primarily in biomedicine as well as in pharmacy, agriculture and for industrial processing. The paper was published in Nature Communications this week.
A multitude of basic chemical compounds can be detected due to their ability to absorb infrared light. It is therefore no surprise that infrared sensors are versatilely applied – e.g. to monitor the health conditions such as sugar concentration or oxygen saturation in the blood, to control the product quality for industrial processing or to predict the ideal harvesting date in agriculture. Even tough inorganic semiconductors handle these tasks reliably; spectrometers based on this material class are expensive in production, heavy and bulky.
As demonstrated by the success of organic light emitting diodes (OLEDs), hydrocarbon based semiconductors offer a serious alternative for opto-electronic applications. In contrast to their inorganic counterparts, such devices can be realised as light-weight, flexible, highly integrated and especially low-cost foils. Previous studies carried out at the Dresden Integrated Center for Applied Physics and Photonic Materials under direction of Prof. Karl Leo already underlined these advantages for OLEDs, organic photovoltaics and transistors. In the following, the research group headed by Prof. Koen Vandewal stated the question, whether organic semiconductors would also allow for (near) infrared sensing.
Initially, the scientists encountered the hurdle of identifying organic layers which can efficiently detect near infrared (NIR) signals, since organic compounds are transparent in this region. To solve this several decades old problem, the scientists of the TU Dresden considered utilizing an effect already known in organic solar cells: When blending two organic semiconductors on a molecular level, a very weak NIR absorption at the interface between both molecule species can be measured.
Finally, Bernhard Siegmund et al. achieved the breakthrough for organic NIR detectors, when they sandwiched such blend layers between ultra-thin mirror layers. By a careful choice of the distance between both metal mirrors, they succeeded in establishing a resonance, at which the incoming light transits the blend layer dozens of times via repeated reflections at the mirrors. The resulting device only detects light with a specific wavelength in the NIR. Utilizing a variation of the organic layer thickness, the sensor can scan several wavelengths simultaneously and hence, reconstruct spectral fingerprints of, for example, food or blood samples.
The authors see with this invention a novel research domain opening, giving rise to a multitude of exciting questions of both, applied and fundamental nature. For the coming years, Siegmund, Vandewal, and coauthors expect further progress for their sensors, making them appear almost entirely transparent to the human eye.
Suggested Items
Northrop Grumman’s IVEWS Completes F-16 Electronic Warfare Operational Assessment
05/05/2025 | Northrop GrummanNorthrop Grumman Corporation’s IVEWS (Integrated Viper Electronic Warfare Suite) has successfully completed Operational Assessment flight testing on U.S. Air Force F-16 aircraft, demonstrating its effectiveness against advanced radar-guided threats.
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.
TDK Demonstrates the World's First ‘Spin Photo Detector’ Capable of 10X Data Transmission Speeds for the Next Generation of AI
04/16/2025 | PRNewswireThis new device is expected to be a key driver for implementing photoelectric conversion technology that boosts data transmission and data processing speed, particularly in AI applications, while simultaneously reducing power consumption.
Satair, RTX’s Collins Aerospace Extend 50-year Relationship
04/14/2025 | Collins AerospaceSatair and Collins Aerospace, an RTX business, have signed a four-year extension of their cabin interior parts distribution agreement, continuing a relationship that has spanned more than 50 years.