-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Seeking out New Functions for Superconducting Nanoelectronics
June 16, 2017 | University of TokyoEstimated reading time: 2 minutes

A team of researchers at the University of Tokyo and their collaborators discovered that a two-dimensional semiconductor with a broken inversion symmetry demonstrates rectification, or the property of a diode, under a magnetic field applied in a certain direction. This finding provides important insights essential for developing the next generation of superconducting nanoelectronic materials.
In general, a magnetic field applied in a specific direction in a system in which the spatial inversion symmetry is broken generates rectifying characteristics, but the rectification property is larger in the superconducting state, compared to the normal conducting state. 2017 Ryohei Wakatsuki, Yu Saito.
Superconductivity is a property in which electrical resistance disappears; it has been the focus of much basic and applied research around the world as a next-generation technology that could enhance energy conservation. The integration of superconductors is expected to play an important role in next-generation computing systems, such as in the area of superconducting quantum bits; thus, there is much demand for the development of new functions of superconducting nanoelectronics for these purposes—especially superconductors with a rectifying property, i.e., superconducting diodes. Although recent research has revealed rectification in a normal conductor crystal with a broken inversion symmetry, not much research has been conducted on the rectification property of a superconductor lacking inversion symmetry.
The research group led by graduate students Ryohei Wakatsuki and Yu Saito, Professor Yoshihiro Iwasa, and Professor Naoto Nagaosa at the Graduate School of Engineering, the University of Tokyo, and their collaborators fabricated an electric double-layer transistor (EDLT) structure, a kind of field effect transistor, using a high-quality single crystal of molybdenum disulfide (MoS2), a layered material that is a type of atomic film material. The capacity of electrons induced by the strong electric field to accumulate on the surface of a single crystal of MoS2 in this structure makes it possible to realize synthetically the extremely thin, one-atomic-layer-thick ultimate two-dimensional superconductivity. In the current study, the researchers measured the electric conduction characteristics of a MoS2-EDLT device with a magnetic field applied perpendicular to the surface. They observed extremely large rectifying characteristics in the superconducting state by measuring the second harmonic component of electric resistance to examine rectification.
Moreover, the scientists applied theoretical calculations for superconducting fluctuation currents to explain the mechanism of the enhanced rectification property, and showed that the phenomenon could occur in any superconductor with a broken inversion symmetry.
"The nonlinear response of rectifying characteristics and electric current discovered in this research is considered to be a universal phenomenon in superconductors in which the spatial inversion symmetry has been broken," says Professor Nagaosa. He continues, "The present result will pave the way for the development of functions of superconducting nanoelectronics, as well as become the cornerstone of a new academic field created to study two-dimensional superconductivity with broken spatial inversion symmetry."
Suggested Items
LiU and Siemens Energy Enter Into Strategic Partnership
04/01/2025 | Linköping UniversityIn order to find long-term solutions to future challenges in the energy field, Linköping University and Siemens Energy AB sign a strategic partnership agreement.
COMPLiQ, Purdue University Partner to Advance AI Security and Compliance Research
03/31/2025 | PRNewswireCollaborative Digital Innovations (CDI), the company behind COMPLiQ, a cutting-edge AI security and compliance platform, has entered into a research partnership with Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS).
New Cryostatic Systems Elevate Current Research on Qubits
03/31/2025 | Fraunhofer IAFThe Center Nanoelectronic Technologies (CNT) at Fraunhofer IPMS has recently acquired new cryostats for the research on qubits and the qualification of superconducting systems.
DuPont’s Nora Radu Receives American Chemical Society’s Distinguished Service Award for the Advancement of Inorganic Chemistry
03/31/2025 | DuPontDuPont announced that Nora Radu, Ph.D., DuPont Senior Laureate, has received the 2025 American Chemical Society (ACS) Award for Distinguished Service in the Advancement of Inorganic Chemistry, marking a historical milestone as the first industrial scientist to achieve this prestigious honor since the award was established in 1963.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.