Fuel of the Future
June 21, 2017 | GeminiEstimated reading time: 11 minutes
For many years, politicians have suggested that Norway’s longest railway line (Nordlandsbanen) be made emission-free – in the traditional way. In other words, politicians believe that today’s diesel operation should be replaced by electrification, using pylons and overhead lines.
In the spring of 2015, Møller-Holst and his colleagues at SINTEF completed a study for the Norwegian National Rail Administration (JBV) demonstrating that it was possible to operate several of Norway’s railway lines, including Nordlandsbanen, emission-free.
In fact, the report concluded that between EUR 36 and 45 billion can be saved annually on the line from Steinkjer to Bodø (along Nordlandsbanen) if battery- or hydrogen-powered trains were used instead of traditional electrification.
“The report reached a consensus, based on individual experts’ statements obtained during the project, including those from the JBV’s own specialists and SINTEF’s interdisciplinary team,” says Møller-Holst, who led the study.
“Prior to 2020 biodiesel should replace fossil diesel fuel as an interim solution. Then, in the early 2020s, investments in battery-powered trains will be the most attractive option,” he said. “From the mid 2020s, hydrogen is the solution that best fulfils the various requirements that apply for freight trains on the future railroad network.”
Four regions in Germany are currently taking the lead internationally. They have commissioned 100 hydrogen-powered passenger trains. The first is already undergoing trials and the technology is expected to be ready for freight trains before 2025. Møller-Holst argues that Norway should follow the Germans in using hydrogen, and suggests starting with Raumabanen when it comes to passenger trains and Nordlandsbanen for freight trains.
A “wind-wind” situation
Across the fjord from the city of Trondheim there is a mountain chain that the locals call “the Fosen Alps”. This is where Statkraft and TrønderEnergi will construct Europe’s largest wind farm. The wind blows intensively on Fosen all year round, which makes for enormous potential. Annual production from this wind farm alone is expected to reach 3.5 TWh (terawatt hours) of renewable energy, and will be sufficient to supply electricity to Trondheim’s entire population of 170,000.
“Currently, both NTNU and SINTEF are providing decision support to TrønderEnergi as part of the company’s evaluation of the possibility of producing hydrogen from the surplus wind energy,” says Møller-Holst.
Many other stakeholders across Norway are also making the similar assessments looking into hydrogen production. This includes Glomfjord, at a hydroelectric power plant that was a ‘gemini’ plant to that at Rjukan –the cradle of the industrial boom created close to a century ago when Norsk Hydro started producing hydrogen for fertilizers.
SINTEF has recently identified as many as 10 stakeholders that intend to start hydrogen production in Norway. SINTEF is assisting several as they assess possible investments. Interest in hydrogen is really taking off.
However, energy researchers at SINTEF have plans that are even more exciting than hydrogen production from surplus renewable energy. Tommy Mokkelbost is a Senior Research Scientist working at SINTEF’s Svalbard office.
“In Svalbard the impact of climate change is much more severe than in other areas on the planet,” he says. “The ice around the archipelago is melting rapidly, and the glaciers are retreating at record speeds. This creates problems for polar bears in their hunting areas. Moreover, power and heat to Longyearbyen is supplied by Norway’s only coal-fired power station. So what would be more natural than to transform Longyearbyen into the world’s first emission-free community?”
Several options should be studied, of which hydrogen technology represents an exciting alternative, he says.
He envisages that hydrogen could be produced from wind farms located in Norway’s northernmost county, Finnmark, where the wind never stops blowing, but where today’s power grid capacity is very limited. Hydrogen could then be transported to Svalbard in liquid form using hydrogen tankers.
The Japanese giant Kawasaki Heavy Industries is already constructing a pilot vessel designed to transport liquid hydrogen. The first vessel will be used to import hydrogen from Australia to Japan from 2020.
Møller-Holst supports this idea.
“The passenger cruisers that currently circumnavigate Svalbard, as well as the numerous ferries operating along the Norwegian coast – in and out of our World Heritage fjords burning heavy oils and emitting large quantities of CO2, particulates and NOx – could also be hydrogen-powered, and thus emission-free, in the foreseeable future,” he says.
Making maritime transport “green”
Norway has become a world leader in reducing maritime emissions over the last three decades. The country has succeeded by developing the world’s most advanced and efficient ship designs, paving the road for the use of natural gas as a fuel and, since 2015, operating the world’s first battery-powered car ferry . Next is hydrogen, which will eliminate greenhouse gas emissions also for longer ferry crossings.
Recently, on contract for the shipyard Fiskerstrand, SINTEF was selected to design the world’s first hydrogen ferry in collaboration with regulatory bodies and a number of technology suppliers, including some from Norway. The goal is to have the vessel in the water by 2020. Considerable public funding has been allocated to stimulating development in this field. In addition to SINTEF’s advocacy, the Norwegian Public Roads Administration (Statens vegvesen), which is responsible for all ferries as an integral part of the national road infrastructure, has lately become a key driver in reducing emissions from maritime transport.
The project has already received international attention, not least in Brussels. Public support has been granted from the new Pilot-E funding programme, which is a joint funding instrument involving the Research Council of Norway, ENOVA and Innovation Norway.
“If we in Norway want to secure future revenues from tourism and exotic Arctic adventures, we cannot continue to power Svalbard by coal nor ships with heavy fuel oil,” says Møller-Holst. “We already have the technology and the knowledge we need to reach zero emissions.”
There is no doubt that the “green transition” is well underway: Møller-Holst is already meeting with the Norwegian state-owned oil company Statoil, which is eager to talk to him about its new department, New Energy Solutions.
About Steffen Møller-Holst:
Møller-Holst is vice president marketing with responsibility for SINTEF’s portfolio of hydrogen-related projects, which are now worth NOK 60 million per year.
He holds a Ph.D. in fuel cell technology from NTNU in 1996, and worked for two years with fuel cell system development as part of the US Department of Energy’s hydrogen programme at Los Alamos National Laboratory, New Mexico.
During the last 15 years he has been actively pursuing the implementation of innovative technologies, and has devoted substantial time as a policy lobbyist in the fields of low and zero-emission transport. From 2006-2014 he chaired the Norwegian Hydrogen Council as an advisory body to the Norwegian Ministries of Petroleum and Energy, and Transport and Communications.
Since 2008 he has been responsible for the transport pillar of EU’s RTD-programme “Fuel Cells and Hydrogen Joint Undertaking” (FCHJU). The FCHJU has a budget of € 1,33 billion granted by the European Commission for the period 2014-2020, as well as an equivalent amount of funds provided by the industrial sector.
Since 2015 Møller-Holst has been Board Chair of the Norwegian Hydrogen Forum, which is a trade organisation for industrial and academic stakeholders as well as NGOs engaged in the field of hydrogen technology.
Page 2 of 2Suggested Items
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
05/05/2025 | Hon Hai Technology GroupHon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.