Ultra-Compact Phase Modulators Based on Graphene Plasmons
June 27, 2017 | ICFOEstimated reading time: 1 minute
Modulating the amplitude and phase of light is a key ingredient for many of applications such as wavefront shaping, transformation optics, phased arrays, modulators and sensors. Performing this task with high efficiency and small footprint is a major challenge for the development of optoelectronic devices.
In a recent paper published in Nature Photonics ("Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons"), ICFO researchers Dr. Achim Woessner and Dr. Mark Lundeberg, led by ICREA Prof. at ICFO Frank Koppens, in collaboration with Prof. Rainer Hillenbrand from CIC Nanogune, Iacopo Torre and Prof. Marco Polini from IIT and Dr. Yuanda Gao and Prof. James Hone from Columbia University, have developed a phase modulator based on graphene capable of tuning the light phase between 0 and 2π in situ.
To achieve this, they exploited the unique wavelength tunability of graphene plasmons, light coupled to electrons in graphene.
In their experiment, they used ultra-high quality graphene and build a fully functional phase modulator with a device footprint of only 350 nm, which is 30 times than the wavelength of the infrared light used for this experiment.
A near-field microscope was used to excite and image the plasmons, allowing an unprecedented insight into the plasmon properties such as their wavelength and phase.
This new type of phase modulator enables graphene plasmons to be used for ultra-compact light modulators and phase arrays with the possibility to control, steer and focus light in situ.
This has potential applications for on-chip biosensing and two dimensional transformation optics.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.