New Materials at the Touch of a Button
July 18, 2017 | University of ManchesterEstimated reading time: 2 minutes

The rapidly developing science and technology of graphene and atomically-thin materials has taken another step forward with new research from The University of Manchester.
This research, published in Science, shows how a variety of different electronic properties – essentially new materials - can be realised simply by applying a magnetic field.
Electrons inside materials move quite differently from a free electron in vacuum: their properties are strongly affected by the electric potential of ions comprising the crystal lattice. This interaction changes the mass of electrons and makes materials either metals, semiconductors or insulators, depending on the detailed atomic structure. This provides the great variety of material properties we know and work with.
Earlier, the researchers at The University of Manchester have found ways to create new materials with bespoke electronic properties by placing one electronic material (in this case graphene) on top of another crystal, hexagonal boron nitride. Now, they demonstrate how to create a whole sequence of different electronic materials by simply tuning the applied magnetic field.
In this combination of materials, boron nitride atoms create a periodic pattern for electrons in graphene known as a superlattice. Such a superlattice is characterised by the length scale of the periodic pattern, whereas the strength of applied magnetic field can be counted in so-called flux quanta, elementary units of magnetic field.
A matching condition is achieved each time when an integer fraction of the flux quantum penetrates through an area given by the elementary superlattice. At these special values of magnetic field, the researchers observed that electrons started moving along straight lines, as if the magnetic field were absent.
This is in stark contrast to the known behaviour of electrons in a magnetic field where electrons must move along curved trajectories known as cyclotron orbits. As a result of these changes from straight to curved trajectories and back at many matching conditions, the researchers found oscillations in electrical conductivity of graphene superlattices.
All previously known oscillations in a magnetic field require low-temperatures, typically equal to when helium becomes a liquid. In contrast, the new oscillations were observed at very high temperatures, well above room temperature.
Professor Sir Andre Geim from The University of Manchester, who won the Nobel Prize for Physics in 2010 for his work on graphene, led the experimental effort and said: “Oscillatory quantum effects always present milestones in our understanding of materials properties. They are exceedingly rare. It is more than 30 years since a new type of quantum oscillation was reported.”
He added: “Our oscillations stand out by their extreme robustness, happening under ambient conditions in easily accessible magnetic fields.”
Another remarkable aspect of this work is that graphene superlattices have previously been used to study so-called Hofstadter butterflies, subtle changes in the electronic structure with magnetic field. These changes exhibit a fascinating fractal structure.
Professor Vladimir Falko, Director of the National Graphene Institute who provided theoretical support in this work commented: “Our work helps to demystify the Hofstadter butterfly. The complex fractal structure of the Hofstadter butterfly spectrum can be understood as simple Landau quantisation in the sequence of new metals created by magnetic field.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.