With a Gentle Touch, NIST Scientists Push Us Closer to Flash Memory Successor
August 9, 2017 | NISTEstimated reading time: 2 minutes

Sometimes a light touch is best: When you're telling a joke or hammering a tiny finishing nail into a wall, a gentle delivery often succeeds most effectively. Research at the National Institute of Standards and Technology (NIST) suggests it also may be true in the microscopic world of computer memory, where a team of scientists may have found that subtlety solves some of the issues with a novel memory switch.
This technology, resistive random access memory (RRAM), could form the basis of a better kind of nonvolatile computer memory, where data is retained even when the power is off. Nonvolatile memory is already familiar as the basis for flash memory in thumb drives, but flash technology has essentially reached its size and performance limits. For several years, the industry has been hunting for a replacement.
RRAM could surpass flash in many key respects: It is potentially faster and less energy-intensive. It also could pack far more memory into a given space—its switches are so small that a terabyte could be packed into a space the size of a postage stamp. But RRAM has yet to be broadly commercialized because of technical hurdles that need addressing.
One hurdle is its variability. A practical memory switch needs two distinct states, representing either a one or a zero, and component designers need a predictable way to make the switch flip. Conventional memory switches flip reliably when they receive a pulse of electricity, but we're not there yet with RRAM switches, which are still flighty.
“You can tell them to flip and they won’t,” said NIST guest researcher David Nminibapiel. “The amount needed to flip one this time may not be enough the next time around, but if you use too much energy and overshoot it, you can make the variability problem even worse. And even if you flip it successfully, the two memory states can overlap, making it unclear whether the switch has a one or a zero stored.”
This randomness cuts into the technology’s advantages, but in two recent papers, the research team has found a potential solution. The key lies in controlling the energy delivered to the switch by using multiple, short pulses instead of one long pulse.
Typically, chip designers have used relatively strong pulses of about a nanosecond in duration. The NIST team, however, decided to try a lighter touch—using less energetic pulses of 100 picoseconds, about a tenth as long. They found that sending a few of these gentler signals was useful for exploring the behavior of RRAM switches as well as for flipping them.
“Shorter pulses reduce the variability,” Nminibapiel said. “The issue still exists, but if you tap the switch a few times with a lighter 'hammer,' you can move it gradually, while simultaneously giving you a way to check it each time to see if it flipped successfully.”
Because the lighter touch does not push the switch significantly from its two target states, the overlapping issue can be significantly reduced, meaning one and zero can be clearly distinguished. Nminibapiel added that the use of shorter pulses also proved instrumental to uncovering the next serious challenge for RRAM switches—their instability.
“We achieved high endurance, good stability and uniformity comparable to using longer pulse widths,” he said. “Instability affects our ability to maintain the memory state, though. Eliminating this instability is a problem for another day, but at least we’ve clarified the problem for the next round of research.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.