Scientists Developing Innovative Techniques for High-Resolution Analysis of Hybrid Materials
August 30, 2017 | Lawrence Berkeley National LaboratoryEstimated reading time: 2 minutes
In an effort to better study a promising class of materials that could energize the solar cell industry, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new method of analyzing the material’s molecular-scale structure.
Schematic of organo-lead halide perovskite showing distortions from random halide positions (left) versus ordered halide positions (right). A Berkeley Lab study shows that thermally induced distortions exist in these materials at all iodide/bromide compositions, and that these distortions have a significant impact on the perovskite’s solar cell performance. (Credit: Walter Drisdell/Berkeley Lab)
By combining advanced X-ray spectroscopy measurements with calculations based on fundamental “first principles” theory, researchers obtained an atomic-scale view of organo-lead halide perovskites not easily achieved with current technology.
The approach they are taking works well with structurally disordered materials like halide perovskites, which have garnered intense interest in the solar cell industry because of rapid increases in their photovoltaic efficiency over the past few years. Understanding the structure of perovskites will help researchers determine how to maximize the material’s solar efficiency.
Halides, such as iodide or bromide, are mixed at different ratios to tune properties in the material, like band gaps, that determine solar absorption efficiency. But doing so creates disorder in the structure, making it difficult to use traditional imaging methods.
“Most imaging techniques can’t resolve much of the disordered structure,” said Walter Drisdell, a staff scientist at Berkeley Lab’s Chemical Sciences Division. “X-ray absorption spectroscopy, with high-resolution detection, works because it looks at very local structure and chemical environment around the lead centers without interference from longer-range disorder.”
The researchers used an advanced X-ray spectroscopic technique at the Stanford Synchrotron Radiation Lightsource (SSRL) at DOE’s SLAC National Accelerator Laboratory. They coupled their results with theory work conducted at Berkeley Lab’s Molecular Foundry, where they interpreted the data to understand the structural details of the materials.
“By coupling to our first-principles calculations, we learned that thermal motions, particularly tilts of the lead-halide octahedra, are really important in these materials,” said Drisdell. “The tilts increase the band gap significantly over what we predict for an ordered structure. Before this, little was known about the local structure of these mixed materials, and how that structure affects the large-scale properties that are important for efficient solar devices. We think this work is a milestone that enables significant advances in understanding perovskite photovoltaic materials.”
This work, funded through the Joint Center for Artificial Photosynthesis, sheds light on the chemical structure and dynamics in photovoltaic materials, and could lead to improved designs that maximize solar energy conversion. JCAP is an Energy Innovation Hub supported by DOE’s Office of Science. The Molecular Foundry and SSRL are DOE Office of Science User Facilities.
About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
Summit Interconnect Announces Appointment of Leo LaCroix as Chief Operating Officer
09/09/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading North American manufacturer of Printed Circuit Boards (PCBs), today announced that Leo LaCroix has assumed the role of Chief Operating Officer (COO).
Leadership Change at Koh Young Europe
08/14/2025 | Koh YoungAfter 16 years of leading Koh Young Europe as General Manager, we would like to announce that Harald Eppinger will step down from his executive role.
TTM Technologies, Inc. Announces Retirement Plans of its CEO and Proceeds with CEO Successor Search
08/04/2025 | TTM Technologies, Inc.TTM Technologies, Inc., a leading global manufacturer of technology solutions including mission systems, radio frequency (“RF”) components and RF microwave/microelectronic assemblies, quick-turn and technologically advanced printed circuit boards (“PCB”), today announced that Thomas T. Edman, the company’s President and Chief Executive Officer, intends to retire following the appointment of the company’s next President and CEO.
Advancing Electrolytic Copper Plating for AI-driven Package Substrates
08/05/2025 | Dirk Ruess and Mustafa Oezkoek, MKS’ AtotechThe rise of artificial intelligence (AI) applications has become a pivotal force driving growth in the server industry. Its challenging requirements for high-frequency and high-density computing are leading to an increasing demand for development of advanced manufacturing methods of package substrates with finer features, higher hole densities, and denser interconnects. These requirements are essential for modern multilayer board (MLB) designs, which play a critical role in AI hardware. However, these intricate designs introduce considerable manufacturing complexities.