New Soft Robots Really Suck
September 1, 2017 | EPFLEstimated reading time: 1 minute
EPFL scientists have created the first functional robot powered entirely by vacuum: made up of soft building blocks, it moves by having air sucked out of them. The robot can be reconfigured to perform different tasks, like climbing vertical walls and grabbing objects.
This new robot sucks: to move, air has to be sucked out of its individual components. Inspired by muscle contraction, its individual soft components are activated (they collapse) when negative pressure (vacuum) is applied to them. The robot uses suction to grab objects or to stick to a smooth wall for climbing, so it can really achieve a wide range of tasks because of the unique properties of vacuum. The robot can be reconfigured to perform different tasks, making it highly modular and versatile, with a wide range of applications in both research and in industry. The invention is published today in Science Robotics.
“What we have is a fully functional robot which is entirely powered by vacuum, which has never been done before,” says EPFL roboticist Matt Robertson who worked on the project. “Previous work has shown individual components powered by vacuum, but never in a complete system.”
Vacuum-powered components are a recent addition to robotics – and, more importantly, they’re safe. Today, most actuators on the market are activated by applying positive pressure, i.e. by injecting air into their components. But containing positive pressure requires stiff high-pressure pneumatics, which also pose a safety threat: in extreme situations, they can explode. By comparison, vacuum-powered actuators are safe, soft, and simple to build.
“What's more is that our soft building blocks are designed to be plug-and-play, so ultimately we can assemble several types of robots from the same basic units,” says EPFL scientists and lead researcher Jamie Paik. “They can be reconfigured to perform different tasks like crawling, gripping canisters, and climbing a vertical wall.”
A five-module robot can move like a tentacle; a four-module robot with a suction gripper can grab an object and drop it on a target; a three-module robot can crawl on the ground; a two-module robot can be equipped with suction-cup feet to climb a smooth, vertical surface, like glass. The enormous versatility of the new robots can be exploited for studying locomotion and for future applications at an industrial level.
This research was funded in part by NCCR Robotics.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
PCBA Market Poised to Reach $147.5 Billion by 2035
10/20/2025 | Globe NewswireGlobal printed circuit board assembly market is projected to reach $147.5 billion by 2035, at a CAGR of 4.7% during the forecast period 2025-2035
Würth Elektronik Participates in EU Initiative PROACTIF for Cutting-edge Drone and Robotics Solutions
10/14/2025 | Wurth ElektronikWürth Elektronik is a partner in the visionary EU project PROACTIF, funded under the Chips Joint Undertaking (Chips JU). The international consortium of 42 partners from 13 countries aims to strengthen Europe’s technological sovereignty i
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.
Sumitomo Riko Boosts Automotive Design Efficiency 10x with Ansys AI Simulation Technology
10/13/2025 | SynopsysSumitomo Riko is implementing Ansys, part of Synopsys, Inc. AI technology to accelerate time-to-solution and improve efficiency during the design and manufacturing of automotive components.